
Pimlico Documentation
Release 0.9.23

Mark Granroth-Wilding

Aug 07, 2019

Contents

1 Contents 3

Python Module Index 151

Index 153

i

ii

Pimlico Documentation, Release 0.9.23

The Pimlico Processing Toolkit is a toolkit for building pipelines of tasks for processing large datasets (corpora).
It is especially focussed on processing linguistic corpora and provides wrappers around many existing, widely used
NLP (Natural Language Processing) tools.

Pimlico is written in Python and can be run using Python >=2.7 or >=3.6. This means you can write your own
processing modules using either Python 2 or 3.

Note: These are the docs for the release candidate for v1.0.

This brings with it a big project to change how datatypes work internally (previously in branch datatypes) and
requires all datatypes and modules to be updated to the new system. More info. . .

Modules marked with !! in the docs are waiting to be updated and don’t work. Other known outstanding tasks are
marked with todos: full todo list.

These issues will be resolved before v1.0 is released.

It makes it easy to write large, potentially complex pipelines with the following key goals:

• to provide clear documentation of what has been done;

• to make it easy to incorporate standard NLP tasks,

• and to extend the code with non-standard tasks, specific to a pipeline;

• to support simple distribution of code for reproduction, for example, on other datasets.

The toolkit takes care of managing data between the steps of a pipeline and checking that everything’s executed in the
right order.

The core toolkit is written in Python. Pimlico is open source, released under the GPLv3 license. It is available from
its Github repository. To get started with a Pimlico project, follow the getting-started guide.

Pimlico is short for PIpelined Modular LInguistic COrpus processing.

More NLP tools will gradually be added. See my wishlist for current plans.

Contents 1

https://github.com/markgw/pimlico/projects/1
https://github.com/markgw/pimlico

Pimlico Documentation, Release 0.9.23

2 Contents

CHAPTER 1

Contents

1.1 Pimlico guides

Step-by-step guides through common tasks while using Pimlico.

1.1.1 Super-quick Pimlico setup

This is a very quick walk-through of the process of starting a new project using Pimlico. For more details, explanations,
etc see the longer getting-started guide.

First, make sure Python is installed.

System-wide configuration

Choose a location on your file system where Pimlico will store all the output from pipeline modules. For example,
/home/me/.pimlico_store/.

Create a file in your home directory called .pimlico that looks like this:

store=/home/me/.pimlico_store

This is not specific to a pipeline: separate pipelines use separate subdirectories.

Set up new project

Create a new, empty directory to put your project in. E.g.:

cd ~
mkdir myproject

Download newproject.py into this directory and run it:

3

https://raw.githubusercontent.com/markgw/pimlico/master/admin/newproject.py

Pimlico Documentation, Release 0.9.23

wget https://raw.githubusercontent.com/markgw/pimlico/master/admin/newproject.py
python newproject.py myproject

This fetches the latest Pimlico codebase (in pimlico/) and creates a template pipeline (myproject.conf).

Customizing the pipeline

You’ve got a basic pipeline config file now (myproject.conf).

Add sections to it to configure modules that make up your pipeline.

For guides to doing that, see the the longer setup guide and individual module documentation.

Running Pimlico

Check the pipeline can be loaded and take a look at the list of modules you’ve configured:

./pimlico.sh myproject.conf status

Tell the modules to fetch all the dependencies you need:

./pimlico.sh myproject.conf install all

If there’s anything that can’t be installed automatically, this should output instructions for manual installation.

Check the pipeline’s ready to run a module that you want to run:

./pimlico.sh myproject.conf run MODULE --dry-run

To run the next unexecuted module in the list, use:

./pimlico.sh myproject.conf run

1.1.2 Setting up a new project using Pimlico

Todo: Setup guide has a lot that needs to be updated for the new datatypes system. I’ve updated up to Getting input.

You’ve decided to use Pimlico to implement a data processing pipeline. So, where do you start?

This guide steps through the basic setup of your project. You don’t have to do everything exactly as suggested here,
but it’s a good starting point and follows Pimlico’s recommended procedures. It steps through the setup for a very
basic pipeline.

A shorter version of this guide that zooms through the essential setup steps is also available.

System-wide configuration

Pimlico needs you to specify certain parameters regarding your local system. Typically this is just a file in your home
directory called .pimlico. More details.

It needs to know where to put output files as it executes. These settings apply to all Pimlico pipelines you run. Pimlico
will make sure that different pipelines don’t interfere with each other’s output (provided you give them different
names).

4 Chapter 1. Contents

Pimlico Documentation, Release 0.9.23

Most of the time, you only need to specify one storage location, using the store parameter in your local config file.
(You can specify multiple: more details).

Create a file ~/.pimlico that looks like this:

store=/path/to/storage/directory

All pipelines will use different subdirectories of this one.

Getting started with Pimlico

The procedure for starting a new Pimlico project, using the latest release, is very simple.

Create a new, empty directory to put your project in. Download newproject.py into the project directory.

Choose a name for your project (e.g. myproject) and run:

python newproject.py myproject

This fetches the latest version of Pimlico (now in the pimlico/ subdirectory) and creates a basic config file, which
will define your pipeline.

It also retrieves libraries that Pimlico needs to run. Other libraries required by specific pipeline modules will be
installed as necessary when you use the modules.

Building the pipeline

You’ve now got a config file in myproject.conf. This already includes a pipeline section, which gives the
basic pipeline setup. It will look something like this:

[pipeline]
name=myproject
release=<release number>
python_path=%(project_root)s/src/python

The name needs to be distinct from any other pipelines that you run – it’s what distinguishes the storage locations.

release is the release of Pimlico that you’re using: it’s automatically set to the latest one, which has been down-
loaded.

If you later try running the same pipeline with an updated version of Pimlico, it will work fine as long as it’s the same
major version (the first digit). Otherwise, there may be backwards incompatible changes, so you’d need to update your
config file, ensuring it plays nicely with the later Pimlico version.

Getting input

Now we add our first module to the pipeline. This reads input from a collection of text files. We use a small subset of
the Europarl corpus as an example here. This can be simply adapted to reading the real Europarl corpus or any other
corpus stored in this straightforward way.

Download and extract the small corpus from here

In the example below, we have extracted the files to a directory data/europarl_demo in the home directory.

[input-text]
type=pimlico.modules.input.text.raw_text_files
files=%(home)s/data/europarl_demo/*

1.1. Pimlico guides 5

https://raw.githubusercontent.com/markgw/pimlico/master/admin/newproject.py
http://www.statmt.org/europarl/
https://github.com/markgw/pimlico-data/raw/master/europarl_en_small.tar.gz

Pimlico Documentation, Release 0.9.23

Todo: Continue writing from here

Doing something: tokenization

Now, some actual linguistic processing, albeit somewhat uninteresting. Many NLP tools assume that their input has
been divided into sentences and tokenized. The OpenNLP-based tokenization module does both of these things at
once, calling OpenNLP tools.

Notice that the output from the previous module feeds into the input for this one, which we specify simply by naming
the module.

[tokenize]
type=pimlico.modules.opennlp.tokenize
input=tar-grouper

Doing something more interesting: POS tagging

Many NLP tools rely on part-of-speech (POS) tagging. Again, we use OpenNLP, and a standard Pimlico module
wraps the OpenNLP tool.

[pos-tag]
type=pimlico.modules.opennlp.pos
input=tokenize

Running Pimlico

Now we’ve got our basic config file ready to go. It’s a simple linear pipeline that goes like this:

read input docs -> group into batches -> tokenize -> POS tag

Before we can run it, there’s one thing missing: three of these modules have their own dependencies, so we need to
get hold of the libraries they use. The input reader uses the Beautiful Soup python library and the tokenization and
POS tagging modules use OpenNLP.

Checking everything’s dandy

Now you can run the status command to check that the pipeline can be loaded and see the list of modules.

./pimlico.sh myproject.conf status

To check that specific modules are ready to run, with all software dependencies installed, use the run command with
--dry-run (or --dry) switch:

./pimlico.sh myproject.conf run tokenize --dry

With any luck, all the checks will be successful. There might be some missing software dependencies.

6 Chapter 1. Contents

Pimlico Documentation, Release 0.9.23

Fetching dependencies

All the standard modules provide easy ways to get hold of their dependencies automatically, or as close as possible.
Most of the time, all you need to do is tell Pimlico to install them.

Use the run command, with a module name and --dry-run, to check whether a module is ready to run.

./pimlico.sh myproject.conf run tokenize --dry

In this case, it will tell you that some libraries are missing, but they can be installed automatically. Simply issue the
install command for the module.

./pimlico.sh myproject.conf install tokenize

Simple as that.

There’s one more thing to do: the tools we’re using require statistical models. We can simply download the pre-trained
English models from the OpenNLP website.

At present, Pimlico doesn’t yet provide a built-in way for the modules to do this, as it does with software libraries, but
it does include a GNU Makefile to make it easy to do:

cd ~/myproject/pimlico/models
make opennlp

Note that the modules we’re using default to these standard, pre-trained models, which you’re now in a position to use.
However, if you want to use different models, e.g. for other languages or domains, you can specify them using extra
options in the module definition in your config file.

If there are any other library problems shown up by the dry run, you’ll need to address them before going any further.

Running the pipeline

What modules to run?

Pimlico suggests an order in which to run your modules. In our case, this is pretty obvious, seeing as our pipeline is
entirely linear – it’s clear which ones need to be run before others.

./pimlico.sh myproject.conf status

The output also tells you the current status of each module. At the moment, all the modules are UNEXECUTED.

You’ll notice that the tar-grouper module doesn’t feature in the list. This is because it’s a filter – it’s run on the
fly while reading output from the previous module (i.e. the input), so doesn’t have anything to run itself.

You might be surprised to see that input-text does feature in the list. This is because, although it just reads the
data out of a corpus on disk, there’s not quite enough information in the corpus, so we need to run the module to collect
a little bit of metadata from an initial pass over the corpus. Some input types need this, others not. In this case, all
we’re lacking is a count of the total number of documents in the corpus.

Note: To make running your pipeline even simpler, you can abbreviate the command by using a shebang in the config
file. Add a line at the top of myproject.conf like this:

#!./pimlico.sh

Then make the conf file executable by running (on Linux):

1.1. Pimlico guides 7

Pimlico Documentation, Release 0.9.23

chmod ug+x myproject.conf

Now you can run Pimlico for your pipeline by using the config file as an executable command:

./myproject.conf status

Running the modules

The modules can be run using the run command and specifying the module by name. We do this manually for each
module.

./pimlico.sh myproject.conf run input-text

./pimlico.sh myproject.conf run tokenize

./pimlico.sh myproject.conf run pos-tag

Adding custom modules

Most likely, for your project you need to do some processing not covered by the built-in Pimlico modules. At this
point, you can start implementing your own modules, which you can distribute along with the config file so that people
can replicate what you did.

The newproject.py script has already created a directory where our custom source code will live: src/python,
with some subdirectories according to the standard code layout, with module types and datatypes in separate packages.

The template pipeline also already has an option python_path pointing to this directory, so that Pimlico knows
where to find your code. Note that the code’s in a subdirectory of that containing the pipeline config and we specify
the custom code path relative to the config file, so it’s easy to distribute the two together.

Now you can create Python modules or packages in src/python, following the same conventions as the built-in
modules and overriding the standard base classes, as they do. The following articles tell you more about how to do
this:

• Writing Pimlico modules

• Writing document map modules

• Pimlico module structure

Your custom modules and datatypes can then simply be used in the config file as module types.

1.1.3 Running a pipeline

This guide takes you through what to do if you have received someone else’s code for a Pimlico project and would
like to run it.

This guide is written for Unix/Mac users. You’ll need to make some adjustments if using another OS.

What you’ve got

Hopefully got at least a pipeline config file. This will have the extension .conf. In the examples below, we’ll use the
name myproject.conf.

You’ve probably got a whole directory, with some subdirectories, containing this config file (or even several) together
with other related files – datasets, code, etc. This top-level directory is what we’ll refer to as the project root.

8 Chapter 1. Contents

Pimlico Documentation, Release 0.9.23

The project may include some code, probably defining some custom Pimlico module types and datatypes. If all is
well, you won’t need to delve into this, as its location will be given in the config file and Pimlico will take care of the
rest.

Getting Pimlico

You hopefully didn’t receive the whole Pimlico codebase together with the pipeline and code. It’s recommended not
to distribute Pimlico, as it can be fetched automatically for a given pipeline.

You’ll need Python installed.

Download the Pimlico bootstrap script from here and put it in the project root.

Now run it:

python bootstrap.py myproject.conf

The bootstrap script will look in the config file to work out what version of Pimlico to use and then download it.

If this works, you should now be able to run Pimlico.

Using the bleeding edge code

By default, the bootstrap script will fetch a release of Pimlico that the config file declares as being that which it was
built with.

If you want the very latest version of Pimlico, with all the dangers that entails and with the caveat that it might not
work with the pipeline you’re trying to run, you can tell the bootstrap script to checkout Pimlico from its Git repository.

python bootstrap.py --git myproject.conf

Running Pimlico

Perhaps the project root contains a (link to a) script called pimlico.sh.

If not, create one like this:

ln -s pimlico/bin/pimlico.sh .

Now run pimlico.sh with the config file as an argument, issuing the command_status command to see the contents
of the pipeline:

./pimlico.sh myproject.conf status

Pimlico will now run and set itself up, before proceeding with your command and showing the pipeline status. This
might take a bit of time. It will install a Python virtual environment and some basic packages needed for it to run.

1.1.4 Writing Pimlico modules

Pimlico comes with a fairly large number of module types that you can use to run many standard NLP, data
processing and ML tools over your datasets.

For some projects, this is all you need to do. However, often you’ll want to mix standard tools with your own code,
for example, using the output from the tools. And, of course, there are many more tools you might want to run that
aren’t built into Pimlico: you can still benefit from Pimlico’s framework for data handling, config files and so on.

1.1. Pimlico guides 9

https://raw.githubusercontent.com/markgw/pimlico/master/admin/bootstrap.py

Pimlico Documentation, Release 0.9.23

For a detailed description of the structure of a Pimlico module, see Pimlico module structure. This guide takes you
through building a simple module.

Note: In any case where a module will process a corpus one document at a time, you should write a document map
module, which takes care of a lot of things for you, so you only need to say what to do with each document.

Todo: Module writing guide needs to be updated for new datatypes.

In particular, the executor example and datatypes in the module definition need to be updated.

Code layout

If you’ve followed the basic project setup guide, you’ll have a project with a directory structure like this:

myproject/
pipeline.conf
pimlico/

bin/
lib/
src/
...

src/
python/

If you’ve not already created the src/python directory, do that now.

This is where your custom Python code will live. You can put all of your custom module types and datatypes in there
and use them in the same way as you use the Pimlico core modules and datatypes.

Add this option to the [pipeline] section of your config file, so Pimlico knows where to find your code:

python_path=src/python

To follow the conventions used in Pimlico’s codebase, we’ll create the following package structure in src/python:

src/python/myproject/
__init__.py
modules/

__init__.py
datatypes/

__init__.py

Write a module

A Pimlico module consists of a Python package with a special layout. Every module has a file info.py. This
contains the definition of the module’s metadata: its inputs, outputs, options, etc.

Most modules also have a file execute.py, which defines the routine that’s called when it’s run. You should take
care when writing info.py not to import any non-standard Python libraries or have any time-consuming operations
that get run when it gets imported.

execute.py, on the other hand, will only get imported when the module is to be run, after dependency checks.

10 Chapter 1. Contents

Pimlico Documentation, Release 0.9.23

For the example below, let’s assume we’re writing a module called nmf and create the following directory structure
for it:

src/python/myproject/modules/
__init__.py
nmf/

__init__.py
info.py
execute.py

Easy start

To help you get started, Pimlico provides a wizard in the newmodule command.

This will ask you a series of questions, guiding you through the most common tasks in creating a new module. At the
end, it will generate a template to get you started with your module’s code. You then just need to fill in the gaps and
write the code for what the module actually does.

Read on to learn more about the structure of modules, including things not covered by the wizard.

Metadata

Module metadata (everything apart from what happens when it’s actually run) is defined in info.py as a class called
ModuleInfo.

Here’s a sample basic ModuleInfo, which we’ll step through. (It’s based on the Scikit-learn
matrix_factorization module.)

from pimlico.core.dependencies.python import PythonPackageOnPip
from pimlico.core.modules.base import BaseModuleInfo
from pimlico.datatypes.arrays import ScipySparseMatrix, NumpyArray

class ModuleInfo(BaseModuleInfo):
module_type_name = "nmf"
module_readable_name = "Sklearn non-negative matrix factorization"
module_inputs = [("matrix", ScipySparseMatrix)]
module_outputs = [("w", NumpyArray), ("h", NumpyArray)]
module_options = {

"components": {
"help": "Number of components to use for hidden representation",
"type": int,
"default": 200,

},
}

def get_software_dependencies(self):
return super(ModuleInfo, self).get_software_dependencies() + \

[PythonPackageOnPip("sklearn", "Scikit-learn")]

The ModuleInfo should always be a subclass of BaseModuleInfo. There are some subclasses that you might
want to use instead (e.g., see Writing document map modules), but here we just use the basic one.

Certain class-level attributes should pretty much always be overridden:

• module_type_name: A name used to identify the module internally

1.1. Pimlico guides 11

Pimlico Documentation, Release 0.9.23

• module_readable_name: A human-readable short description of the module

• module_inputs: Most modules need to take input from another module (though not all)

• module_outputs: Describes the outputs that the module will produce, which may then be used as inputs to
another module

Inputs are given as pairs (name, type), where name is a short name to identify the input and type is the datatype
that the input is expected to have. Here, and most commonly, this is a subclass of PimlicoDatatype and Pimlico
will check that a dataset supplied for this input is either of this type, or has a type that is a subclass of this.

Here we take just a single input: a sparse matrix.

Outputs are given in a similar way. It is up to the module’s executor (see below) to ensure that these outputs get
written, but here we describe the datatypes that will be produced, so that we can use them as input to other modules.

Here we produce two Numpy arrays, the factorization of the input matrix.

Dependencies: Since we require Scikit-learn to execute this module, we override
get_software_dependencies() to specify this. As Scikit-learn is available through Pip, this is very
easy: all we need to do is specify the Pip package name. Pimlico will check that Scikit-learn is installed before
executing the module and, if not, allow it to be installed automatically.

Finally, we also define some options. The values for these can be specified in the pipeline config file. When
the ModuleInfo is instantiated, the processed options will be available in its options attribute. So, for ex-
ample, we can get the number of components (specified in the config file, or the default of 200) using info.
options["components"].

Executor

Here is a sample executor for the module info given above, placed in the file execute.py.

from pimlico.core.modules.base import BaseModuleExecutor
from pimlico.datatypes.arrays import NumpyArrayWriter
from sklearn.decomposition import NMF

class ModuleExecutor(BaseModuleExecutor):
def execute(self):

input_matrix = self.info.get_input("matrix").array
self.log.info("Loaded input matrix: %s" % str(input_matrix.shape))

Convert input matrix to CSR
input_matrix = input_matrix.tocsr()
Initialize the transformation
components = self.info.options["components"]
self.log.info("Initializing NMF with %d components" % components)
nmf = NMF(components)

Apply transformation to the matrix
self.log.info("Fitting NMF transformation on input matrix" % transform_type)
transformed_matrix = transformer.fit_transform(input_matrix)

self.log.info("Fitting complete: storing H and W matrices")
Use built-in Numpy array writers to output results in an appropriate format
with NumpyArrayWriter(self.info.get_absolute_output_dir("w")) as w_writer:

w_writer.set_array(transformed_matrix)
with NumpyArrayWriter(self.info.get_absolute_output_dir("h")) as h_writer:

h_writer.set_array(transformer.components_)

12 Chapter 1. Contents

Pimlico Documentation, Release 0.9.23

The executor is always defined as a class in execute.py called ModuleExecutor. It should always be a subclass
of BaseModuleExecutor (though, again, note that there are more specific subclasses and class factories that we
might want to use in other circumstances).

The execute() method defines what happens when the module is executed.

The instance of the module’s ModuleInfo, complete with options from the pipeline config, is available as self.
info. A standard Python logger is also available, as self.log, and should be used to keep the user updated on
what’s going on.

Getting hold of the input data is done through the module info’s get_input() method. In the case of a Scipy
matrix, here, it just provides us with the matrix as an attribute.

Then we do whatever our module is designed to do. At the end, we write the output data to the appropriate output
directory. This should always be obtained using the get_absolute_output_dir() method of the module info,
since Pimlico takes care of the exact location for you.

Most Pimlico datatypes provide a corresponding writer, ensuring that the output is written in the correct format for it
to be read by the datatype’s reader. When we leave the with block, in which we give the writer the data it needs, this
output is written to disk.

Pipeline config

Our module is now ready to use and we can refer to it in a pipeline config file. We’ll assume we’ve prepared a suitable
Scipy sparse matrix earlier in the pipeline, available as the default output of a module called matrix. Then we can
add section like this to use our new module:

[matrix]
...(Produces sparse matrix output)...

[factorize]
type=myproject.modules.nmf
components=300
input=matrix

Note that, since there’s only one input, we don’t need to give its name. If we had defined multiple inputs, we’d need
to specify this one as input_matrix=matrix.

You can now run the module as part of your pipeline in the usual ways.

Skeleton new module

To make developing a new module a little quicker, here’s a skeleton module info and executor.

from pimlico.core.modules.base import BaseModuleInfo

class ModuleInfo(BaseModuleInfo):
module_type_name = "NAME"
module_readable_name = "READABLE NAME"
module_inputs = [("NAME", REQUIRED_TYPE)]
module_outputs = [("NAME", PRODUCED_TYPE)]
Delete module_options if you don't need any
module_options = {

"OPTION_NAME": {
"help": "DESCRIPTION",
"type": TYPE,
"default": VALUE,

(continues on next page)

1.1. Pimlico guides 13

Pimlico Documentation, Release 0.9.23

(continued from previous page)

},
}

def get_software_dependencies(self):
return super(ModuleInfo, self).get_software_dependencies() + [

Add your own dependencies to this list
Remove this method if you don't need to add any

]

from pimlico.core.modules.base import BaseModuleExecutor

class ModuleExecutor(BaseModuleExecutor):
def execute(self):

input_data = self.info.get_input("NAME")
self.log.info("MESSAGES")

DO STUFF

with SOME_WRITER(self.info.get_absolute_output_dir("NAME")) as writer:
Do what the writer requires

1.1.5 Writing document map modules

Todo: Write a guide to building document map modules.

For now, the skeletons below are a useful starting point, but there should be a more fulsome explanation here of what
document map modules are all about and how to use them.

Todo: Document map module guides needs to be updated for new datatypes.

Skeleton new module

To make developing a new module a little quicker, here’s a skeleton module info and executor for a document map
module. It follows the most common method for defining the executor, which is to use the multiprocessing-based
executor factory.

from pimlico.core.modules.map import DocumentMapModuleInfo
from pimlico.datatypes.tar import TarredCorpusType

class ModuleInfo(DocumentMapModuleInfo):
module_type_name = "NAME"
module_readable_name = "READABLE NAME"
module_inputs = [("NAME", TarredCorpusType(DOCUMENT_TYPE))]
module_outputs = [("NAME", PRODUCED_TYPE)]
module_options = {

"OPTION_NAME": {
"help": "DESCRIPTION",
"type": TYPE,
"default": VALUE,

(continues on next page)

14 Chapter 1. Contents

Pimlico Documentation, Release 0.9.23

(continued from previous page)

},
}

def get_software_dependencies(self):
return super(ModuleInfo, self).get_software_dependencies() + [

Add your own dependencies to this list
]

def get_writer(self, output_name, output_dir, append=False):
if output_name == "NAME":

Instantiate a writer for this output, using the given output dir
and passing append in as a kwarg
return WRITER_CLASS(output_dir, append=append)

A bare-bones executor:

from pimlico.core.modules.map.multiproc import multiprocessing_executor_factory

def process_document(worker, archive_name, doc_name, *data):
Do something to process the document...

Return an object to send to the writer
return output

ModuleExecutor = multiprocessing_executor_factory(process_document)

Or getting slightly more sophisticated:

from pimlico.core.modules.map.multiproc import multiprocessing_executor_factory

def process_document(worker, archive_name, doc_name, *data):
Do something to process the document

Return a tuple of objects to send to each writer
If you only defined a single output, you can just return a single object
return output1, output2, ...

You don't have to, but you can also define pre- and postprocessing
both at the executor level and worker level

def preprocess(executor):
pass

def postprocess(executor, error=None):
pass

def set_up_worker(worker):
pass

def tear_down_worker(worker, error=None):
(continues on next page)

1.1. Pimlico guides 15

Pimlico Documentation, Release 0.9.23

(continued from previous page)

pass

ModuleExecutor = multiprocessing_executor_factory(
process_document,
preprocess_fn=preprocess, postprocess_fn=postprocess,
worker_set_up_fn=set_up_worker, worker_tear_down_fn=tear_down_worker,

)

1.1.6 Filter modules

Filter modules appear in pipeline config, but never get executed directly, instead producing their output on the fly when
it is needed.

There are two types of filter modules in Pimlico:

• All document map modules can be used as filters.

• Other modules may be defined in such a way that they always function as filters.

Using document map modules as filters

See this guide for how to create document map modules, which process each document in an input iterable corpus,
producing one document in the output corpus for each. Many of the core Pimlico modules are document map modules.

Any document map module can be used as a filter simply by specifying filter=True in its options. It will then not
appear in the module execution schedule (output by the status command), but will get executed on the fly by any
module that uses its output. It will be initialized when the downstream module starts accessing the output, and then
the single-document processing routine will be run on each document to produce the corresponding output document
as the downstream module iterates over the corpus.

It is possible to chain together filter modules in sequence.

Other filter modules

Todo: Filter module guide needs to be updated for new datatypes. This section is currently completely wrong –
ignore it! This is quite a substantial change.

The difficulty of describing what you need to do here suggests we might want to provide some utilities to make this
easier!

A module can be defined so that it always functions as a filter by setting module_executable=False on its
module-info class. Pimlico will assume that its outputs are ready as soon as its inputs are ready and will not try to
execute it. The module developer must ensure that the outputs get produced when necessary.

This form of filter is typically appropriate for very simple transformations of data. For example, it might perform
a simple conversion of one datatype into another to allow the output of a module to be used as if it had a different
datatype. However, it is possible to do more sophisticated processing in a filter module, though the implementation is
a little more tricky (tar_filter is an example of this).

16 Chapter 1. Contents

Pimlico Documentation, Release 0.9.23

Defining

Define a filter module something like this:

class ModuleInfo(BaseModuleInfo):
module_type_name = "my_module_name"
module_executable = False # This is the crucial instruction to treat this as a

→˓filter
module_inputs = [] # Define inputs
module_outputs = [] # Define at least one output, which we'll produce as

→˓needed
module_options = {} # Any options you need

def instantiate_output_datatype(self, output_name, output_datatype, **kwargs):
Here we produce the desired output datatype,
using the inputs acquired from self.get_input(name)
return MyOutputDatatype()

You don’t need to create an execute.py, since it’s not executable, so Pimlico will not try to load a module executor.
Any processing you need to do should be put inside the datatype, so that it’s performed when the datatype is used
(e.g. when iterating over it), but not when instatiate_output_datatype() is called or when the datatype is
instantiated, as these happen every time the pipeline is loaded.

A trick that can be useful to wrap up functionality in a filter datatype is to define a new datatype that does the necessary
processing on the fly and to set its class attribute emulated_datatype to point to a datatype class that should be
used instead for the purposes of type checking. The built-in tar_filter module uses this trick.

Either way, you should take care with imports. Remember that the execute.py of executable modules is only
imported when a module is to be run, meaning that we can load the pipeline config without importing any dependencies
needed to run the module. If you put processing in a specially defined datatype class that has dependencies, make sure
that they’re not imported at the top of info.py, but only when the datatype is used.

1.1.7 Multistage modules

Multistage modules are used to encapsulate a module than is executed in several consecutive runs. You can think
of each stage as being its own module, but where the whole sequence of modules is always executed together. The
multistage module simply chains together these individual modules so that you only include a single module instance
in your pipeline definition.

One common example of a use case for multistage modules is where some fairly time-consuming preprocessing needs
to be done on an input dataset. If you put all of the processing into a single module, you can end up in an irritating
situation where the lengthy data preprocessing succeeds, but something goes wrong in the main execution code. You
then fix the problem and have to run all the preprocessing again.

Most obvious solution to this is to separate the preprocessing and main execution into two separate modules. But then,
if you want to reuse you module sometime in the future, you have to remember to always put the preprocessing module
before the main one in your pipeline (or infer this from the datatypes!). And if you have more than these two modules
(say, a sequence of several, or preprocessing of several inputs) this starts to make pipeline development frustrating.

A multistage module groups these internal modules into one logical unit, allowing them to be used together by includ-
ing a single module instance and also to share parameters.

Defining a multistage module

1.1. Pimlico guides 17

Pimlico Documentation, Release 0.9.23

Component stages

The first step in defining a multistage module is to define its individual stages. These are actually defined in exactly
the same way as normal modules. (This means that they can also be used separately.)

If you’re writing these modules specifically to provide the stages of your multistage module (rather than tying together
already existing modules for convenience), you probably want to put them all in subpackages.

For an ordinary module, we used the directory structure:

src/python/myproject/modules/
__init__.py
mymodule/

__init__.py
info.py
execute.py

Now, we’ll use something like this:

src/python/myproject/modules/
__init__.py
my_ms_module/

__init__.py
info.py
module1/

__init__.py
info.py
execute.py

module2/
__init__.py
info.py
execute.py

Note that module1 and module2 both have the typical structure of a module definition: an info.py to define the
module-info, and an execute.py to define the executor. At the top level, we’ve just got an info.py. It’s in here
that we’ll define the multistage module. We don’t need an execute.py for that, since it just ties together the other
modules, using their executors at execution time.

Multistage module-info

With our component modules that constitute the stages defined, we now just need to tie them together. We do this by
defining a module-info for the multistage module in its info.py. Instead of subclassing BaseModuleInfo, as
usual, we create the ModuleInfo class using the factory function multistage_module().

ModuleInfo = multistage_module("module_name",
[

Stages to be defined here...
]

)

In other respects, this module-info works in the same way as usual: it’s a class (return by the factory) called
ModuleInfo in the info.py.

multistage_module() takes two arguments: a module name (equivalent to the module_name attribute of a
normal module-info) and a list of instances of ModuleStage.

18 Chapter 1. Contents

Pimlico Documentation, Release 0.9.23

Connecting inputs and outputs

Connections between the outputs and inputs of the stages work in a very similar way to connections between module
instances in a pipeline. The same type checking system is employed and data is passed between the stages (i.e. between
consecutive executions) as if the stages were separate modules.

Each stage is defined as an instance of ModuleStage:

[
ModuleStage("stage_name", TheModuleInfoClass, connections=[...], output_

→˓connections=[...])
]

The parameter connections defines how the stage’s inputs are connected up to either the outputs of previous
stages or inputs to the multistage module. Just like in pipeline config files, if no explicit input connections are given,
the default input to a stage is connected to the default output from the previous one in the list.

There are two classes you can use to define input connections.

InternalModuleConnection This makes an explicit connection to the output of another stage.

You must specify the name of the input (to this stage) that you’re connecting. You may specify the name of the
output to connect it to (defaults to the default output). You may also give the name of the stage that the output
comes from (defaults to the previous one).

[
ModuleStage("stage1", FirstInfo),
FirstInfo has an output called "corpus", which we connect explicitly to the

→˓next stage
We could leave out the "corpus" here, if it's the default output from

→˓FirstInfo
ModuleStage("stage2", SecondInfo, connections=[InternalModuleConnection("data

→˓", "corpus")]),
We connect the same output from stage1 to stage3
ModuleStage("stage3", ThirdInfo, connections=[InternalModuleConnection("data",

→˓ "corpus", "stage1")]),
]

ModuleInputConnection: This makes a connection to an input to the whole multistage module.

Note that you don’t have to explicitly define the multistage module’s inputs anywhere: you just mark certain
inputs to certain stages as coming from outside the multistage module, using this class.

[
ModuleStage("stage1", FirstInfo, [ModuleInputConnection("raw_data")]),
ModuleStage("stage2", SecondInfo, [InternalModuleConnection("data", "corpus

→˓")]),
ModuleStage("stage3", ThirdInfo, [InternalModuleConnection("data", "corpus",

→˓"stage1")]),
]

Here, the module type FirstInfo has an input called raw_data. We’ve specified that this needs to come
in directly as an input to the multistage module – when we use the multistage module in a pipeline, it must be
connected up with some earlier module.

The multistage module’s input created by doing this will also have the name raw_data (specified using a
parameter input_raw_data in the config file). You can override this, if you want to use a different name:

1.1. Pimlico guides 19

Pimlico Documentation, Release 0.9.23

[
ModuleStage("stage1", FirstInfo, [ModuleInputConnection("raw_data", "data

→˓")]),
ModuleStage("stage2", SecondInfo, [InternalModuleConnection("data", "corpus

→˓")]),
ModuleStage("stage3", ThirdInfo, [InternalModuleConnection("data", "corpus",

→˓"stage1")]),
]

This would be necessary if two stages both had inputs called raw_data, which you want to come from different
data sources. You would then simply connect them to different inputs to the multistage module:

[
ModuleStage("stage1", FirstInfo, [ModuleInputConnection("raw_data", "first_

→˓data")]),
ModuleStage("stage2", SecondInfo, [ModuleInputConnection("raw_data", "second_

→˓data")]),
ModuleStage("stage3", ThirdInfo, [InternalModuleConnection("data", "corpus",

→˓"stage1")]),
]

Conversely, you might deliberately connect the inputs from two stages to the same input to the multistage
module, by using the same multistage input name twice. (Of course, the two stages are not required to have
overlapping input names for this to work.) This will result in the multistage just requiring one input, which get
used by both stages.

[
ModuleStage("stage1", FirstInfo,

[ModuleInputConnection("raw_data", "first_data"),
→˓ModuleInputConnection("dict", "vocab")]),

ModuleStage("stage2", SecondInfo,
[ModuleInputConnection("raw_data", "second_data"),

→˓ModuleInputConnection("vocabulary", "vocab")]),
ModuleStage("stage3", ThirdInfo, [InternalModuleConnection("data", "corpus",

→˓"stage1")]),
]

By default, the multistage module has just a single output: the default output of the last stage in the list. You
can specify any of the outputs of any of the stages to be provided as an output to the multistage module. Use the
output_connections parameter when defining the stage.

This parameter should be a list of instances of ModuleOutputConnection. Just like with input connections, if
you don’t specify otherwise, the multistage module’s output will have the same name as the output from the stage
module. But you can override this when giving the output connection.

[
ModuleStage("stage1", FirstInfo, [ModuleInputConnection("raw_data", "first_data

→˓")]),
ModuleStage("stage2", SecondInfo, [ModuleInputConnection("raw_data", "second_data

→˓")],
output_connections=[ModuleOutputConnection("model")]), # This

→˓output will just be called "model"
ModuleStage("stage3", ThirdInfo, [InternalModuleConnection("data", "corpus",

→˓"stage1"),
output_connections=[ModuleOutputConnection("model", "stage3_model")]),

]

20 Chapter 1. Contents

Pimlico Documentation, Release 0.9.23

Module options

The parameters of the multistage module that can be specified when it is used in a pipeline config (those usually
defined in the module_options attribute) include all of the options to all of the stages. The option names are
simply <stage_name>_<option_name>.

So, in the above example, if FirstInfo has an option called threshold, the multistage module will have an
option stage1_threshold, which gets passed through to stage1 when it is run.

Often you might wish to specify one parameter to the multistage module that gets used by several stages. Say stage2
had a cutoff parameter and we always wanted to use the same value as the threshold for stage1. Instead
of having to specify stage1_threshold and stage2_cutoff every time in your config file, you can assign
a single name to an option (say threshold) for the multistage module, whose value gets passed through to the
appropriate options of the stages.

Do this by specifying a dictionary as the option_connections parameter to ModuleStage, whose keys are
names of the stage module type’s options and whose values are the new option names for the multistage module that
you want to map to those stage options. You can use the same multistage module option name multiple times, which
will cause only a single option to be added to the multistage module (using the definition from the first stage), which
gets mapped to multiple stage options.

To implement that above example, you would give:

[
ModuleStage("stage1", FirstInfo, [ModuleInputConnection("raw_data", "first_data

→˓")],
option_connections={"threshold": "threshold"}),

ModuleStage("stage2", SecondInfo, [ModuleInputConnection("raw_data", "second_data
→˓")],

[ModuleOutputConnection("model")],
option_connections={"cutoff": "threshold"}),

ModuleStage("stage3", ThirdInfo, [InternalModuleConnection("data", "corpus",
→˓"stage1"),

[ModuleOutputConnection("model", "stage3_model")]),
]

If you know that the different stages have distinct option name, or that they should always tie their values together
where their option names overlap, you can set use_stage_option_names=True on the stages. This will cause
the stage-name prefix not to be added to the option name when connecting it to the multistage module’s option.

You can also force this behaviour for all stages by setting use_stage_option_names=True when you call
multistage_module(). Any explicit option name mappings you provide via option_connections will
override this.

Running

To run a multistage module once you’ve used it in your pipeline config, you run one stage at a time, as if they were
separate module instances.

Say we’ve used the above multistage module in a pipeline like so:

[model_train]
type=myproject.modules.my_ms_module
stage1_threshold=10
stage2_cutoff=10

The normal way to run this module would be to use the run command with the module name:

1.1. Pimlico guides 21

Pimlico Documentation, Release 0.9.23

./pimlico.sh mypipeline.conf run model_train

If we do this, Pimlico will choose the next unexecuted stage that’s ready to run (presumably stage1 at this point).
Once that’s done, you can run the same command again to execute stage2.

You can also select a specific stage to execute by using the module name <ms_module_name>:<stage_name>,
e.g. model_train:stage2. (Note that stage2 doesn’t actually depend on stage1, so it’s perfectly plausible
that we might want to execute them in a different order.)

If you want to execute multiple stages at once, just use this scheme to specify each of them as a module name for the
run command. Remember, Pimlico can take any number of modules and execute them in sequence:

./pimlico.sh mypipeline.conf run model_train:stage1 model_train:stage2

Or, if you want to execute all of them, you can use the stage name * or all as a shorthand:

./pimlico.sh mypipeline.conf run model_train:all

Finally, if you’re not sure what stages a multistage module has, use the module name <ms_module_name>:?. The
run command will then just output a list of stages and exit.

1.1.8 Running one pipeline on multiple computers

Multiple servers

In most of the examples, we’ve been setting up a pipeline, with a config file, some source code and some data, all on
one machine. Then we run each module in turn, checking that it has all the software and data that it needs to run.

But it’s not unusual to find yourself needing to process a dataset across different computers. For example, you have
access to a server with lots of CPUs and one module in your pipeline would benefit greatly from parallelizing lots of
little tasks over them. However, you don’t have permission to install software on that server that you need for another
module.

This is not a problem: you can simply put your config file and code on both machines. After running one module on
one machine, you copy over its output to the place on the other machine where Pimlico expects to find it. Then you’re
ready to run the next module on the second machine.

Pimlico is designed to handle this situation nicely.

• It doesn’t expect software requirements for all modules to be satisfied before you can run any of them.
Software dependencies are checked only for modules about to be run and the code used to execute a module is
not even loaded until you actually run the module.

• It doesn’t require you to execute your pipeline in order. If the output from a module is available where it’s
expected to be, you can happily run any modules that take that data as input, even if the pipeline up to that point
doesn’t appear to have been executed (e.g. if it’s been run on another machine).

• It provides you with tools to make it easier to copy data between machines. You can easily copy the output
data from one module to the appropriate location on another server, so it’s ready to be used as input to another
module there.

Copying data between computers

Let’s assume you’ve got your pipeline set up, with identical config files, on two computers: server_a and
server_b. You’ve run the first module in your pipeline, module1, on server_a and want to run the next,
module2, which takes input from module1, on server_b.

22 Chapter 1. Contents

Pimlico Documentation, Release 0.9.23

The procedure is as follows:

• Dump the data from the pipeline on server_a. This packages up the output data for a module in a single file.

• Copy the dumped file from server_a to server_b, in whatever way is most convenient, e.g., using scp.

• Load the dumped file into the pipeline on server_b. This unpacks the data directory for the file and puts it in
Pimlico’s data directory for the module.

For example, on server_a:

$./pimlico.sh pipeline.conf dump module1
$ scp ~/module1.tar.gz server_b:~/

Note that the dump command created a .tar.gz file in your home directory. If you want to put it somewhere else,
use the --output option to specify a directory. The file is named after the module that you’re dumping.

Now, log into server_b and load the data.

$./pimlico.sh pipeline.conf load ~/module1.tar.gz

Now module1’s output data is in the right place and ready for use by module2.

The dump and load commands can also process data for multiple modules at once. For example:

$ mkdir ~/modules
$./pimlico.sh pipeline.conf dump module1 ... module10 --output ~/modules
$ scp -r ~/modules server_b:~/

Then on server_b:

$./pimlico.sh pipeline.conf load ~/modules/*

Other issues

Aside from getting data between the servers, there are certain issues that often arise when running a pipeline across
multiple servers.

• Shared Pimlico codebase. If you share the directory that contains Pimlico’s code across servers (e.g.
NFS or rsync), you can have problems resulting from sharing the libraries it installs. See instructions
for using multiple virtualenvs for the solution.

• Shared home directory. If you share your home directory across servers, using the same .pimlico local
config file might be a problem. See Local configuration for various possible solutions.

1.1.9 Documenting your own code

Pimlico’s documentation is produced using Sphinx. The Pimlico codebase includes a tool for generating documenta-
tion of Pimlico’s built-in modules, including things like a table of the module’s available config options and its input
and outputs.

You can also use this tool yourself to generate documentation of your own code that uses Pimlico. Typically, you will
use in your own project some of Pimlico’s built-in modules and some of your own.

Refer to Sphinx’s documentation for how to build normal Sphinx documentation – writing your own ReST documents
and using the apidoc tool to generate API docs. Here we describe how to create a basic Sphinx setup that will generate
a reference for your custom Pimlico modules.

It is assumed that you’ve got a working Pimlico setup and have already successfully written some modules.

1.1. Pimlico guides 23

http://www.sphinx-doc.org/en/stable/

Pimlico Documentation, Release 0.9.23

Basic doc setup

Create a docs directory in your project root (the directory in which you have pimlico/ and your own src/, etc).

Put a Sphinx conf.py in there. You can start from the very basic skeleton here.

You’ll also want a Makefile to build your docs with. You can use the basic Sphinx one as a starting point. Here's
a version of that that already includes an extra target for building your module docs.

Finally, create a root document for your documentation, index.rst. This should include a table of contents which
includes the generated module docs. You can use this one as a template.

Building the module docs

Take a look in the Makefile (if you’ve used our one as a starting point) and set the variables at the top to point to
the Python package that contains the Pimlico modules you want to document.

The make target there runs the tool modulegen in the Pimlico codebase. Just run, in the docs/:

make modules

You can also do this manually:

python -m pimlico.utils.docs.modulegen --path python.path.to.modules modules/

(The Pimlico codebase must, of course, be importable. The simplest way to ensure this is to use Pimlico’s python
alias in its bin/ directory.)

There is now a set of .rst files in the modules/ output directory, which can be built using Sphinx by running make
html.

Your beautiful docs are now in the _build/ directory!

1.2 Core docs

A set of articles on the core aspects and features of Pimlico.

1.2.1 Downloading Pimlico

To start a new project using Pimlico, download the newproject.py script. It will create a template pipeline config file
to get you started and download the latest version of Pimlico to accompany it.

See Setting up a new project using Pimlico for more detail.

Pimlico’s source code is available on on Github.

Manual setup

If for some reason you don’t want to use the newproject.py script, you can set up a project yourself. Download
Pimlico from Github.

Simply download the whole source code as a .zip or .tar.gz file and uncompress it. This will produce a directory
called pimlico, followed by a long incomprehensible string, which you can rename simply pimlico.

Pimlico has a few basic dependencies, but these will be automatically downloaded the first time you load it.

24 Chapter 1. Contents

https://raw.githubusercontent.com/markgw/pimlico/master/admin/newproject.py
https://github.com/markgw/pimlico
https://github.com/markgw/pimlico

Pimlico Documentation, Release 0.9.23

1.2.2 Pipeline config

A Pimlico pipeline, as read from a config file (pimlico.core.config.PipelineConfig) contains all the
information about the pipeline being processed and provides access to specific modules in it. A config file looks much
like a standard .ini file, with sections headed by [section_name] headings, containing key-value parameters of
the form key=value.

Each section, except for vars and pipeline, defines a module instance in the pipeline. Some of these can be
executed, others act as filters on the outputs of other modules, or input readers.

Each section that defines a module has a type parameter. Usually, this is a fully-qualified Python package name that
leads to the module type’s Python code (that package containing the info Python module). A special type is alias.
This simply defines a module alias – an alternative name for an already defined module. It should have exactly one
other parameter, input, specifying the name of the module we’re aliasing.

Special sections

• vars: May contain any variable definitions, to be used later on in the pipeline. Further down, expressions like
%(varname)s will be expanded into the value assigned to varname in the vars section.

• pipeline: Main pipeline-wide configuration. The following options are required for every pipeline:

– name: a single-word name for the pipeline, used to determine where files are stored

– release: the release of Pimlico for which the config file was written. It is considered compatible
with later minor versions of the same major release, but not with later major releases. Typically, a
user receiving the pipeline config will get hold of an appropriate version of the Pimlico codebase to
run it with.

Other optional settings:

– python_path: a path or paths, relative to the directory containing the config file, in which Python
modules/packages used by the pipeline can be found. Typically, a config file is distributed with a
directory of Python code providing extra modules, datatypes, etc. Multiple paths are separated by
colons (:).

Special variable substitutions

Certain variable substitutions are always available, in addition to those defined in vars sections. Use them anywhere
in your config file with an expression like %(varname)s (note the s at the end).

• pimlico_root: Root directory of Pimlico, usually the directory pimlico/ within the project directory.

• project_root: Root directory of the whole project. Current assumed to always be the parent directory of
pimlico_root.

• output_dir: Path to output dir (usually output in Pimlico root).

• home: Running user’s home directory (on Unix and Windows, see Python’s os.path.expanduser()).

• test_data_dir: Directory in Pimlico distribution where test data is stored (test/data in Pimlico root).
Used in test pipelines, which take all their input data from this directory.

For example, to point a parameter to a file located within the project root:

param=%(project_root)s/data/myfile.txt

1.2. Core docs 25

Pimlico Documentation, Release 0.9.23

Directives

Certain special directives are processed when reading config files. They are lines that begin with %%, followed by the
directive name and any arguments.

• variant: Allows a line to be included only when loading a particular variant of a pipeline. For more detail
on pipeline variants, see Pipeline variants.

The variant name is specified as part of the directive in the form: variant:variant_name. You may
include the line in more than one variant by specifying multiple names, separated by commas (and no
spaces). You can use the default variant “main”, so that the line will be left out of other variants. The rest
of the line, after the directive and variant name(s) is the content that will be included in those variants.

[my_module]
type=path.to.module
%%variant:main size=52
%%variant:smaller size=7

An alternative notation for the variant directive is provided to make config files more readable. Instead of
variant:variant_name, you can write (variant_name). So the above example becomes:

[my_module]
type=path.to.module
%%(main) size=52
%%(smaller) size=7

• novariant: A line to be included only when not loading a variant of the pipeline. Equivalent to
variant:main.

[my_module]
type=path.to.module
%%novariant size=52
%%variant:smaller size=7

• include: Include the entire contents of another file. The filename, specified relative to the config file in which
the directive is found, is given after a space.

• abstract: Marks a config file as being abstract. This means that Pimlico will not allow it to be loaded as a
top-level config file, but only allow it to be included in another config file.

• copy: Copies all config settings from another module, whose name is given as the sole argument. May be used
multiple times in the same module and later copies will override earlier. Settings given explicitly in the
module’s config override any copied settings.

All parameters are copied, including things like type. Any parameter can be overridden in the copying
module instance. Any parameter can be excluded from the copy by naming it after the module name.
Separate multiple exclusions with spaces.

The directive even allows you to copy parameters from multiple modules by using the directive multiple
times, though this is not very often useful. In this case, the values are copied (and overridden) in the order
of the directives.

For example, to reuse all the parameters from module1 in module2, only specifying them once:

[module1]
type=some.module.type
input=moduleA
param1=56
param2=never

(continues on next page)

26 Chapter 1. Contents

Pimlico Documentation, Release 0.9.23

(continued from previous page)

param3=0.75

[module2]
Copy all params from module1
%%copy module1
Override the input module
input=moduleB

Multiple parameter values

Sometimes you want to write a whole load of modules that are almost identical, varying in just one or two parameters.
You can give a parameter multiple values by writing them separated by vertical bars (|). The module definition will
be expanded to produce a separate module for each value, with all the other parameters being identical.

For example, this will produce three module instances, all having the same num_lines parameter, but each with a
different num_chars:

[my_module]
type=module.type.path
num_lines=10
num_chars=3|10|20

You can even do this with multiple parameters of the same module and the expanded modules will cover all combina-
tions of the parameter assignments.

For example:

[my_module]
type=module.type.path
num_lines=10|50|100
num_chars=3|10|20

Tying alternatives

You can change the behaviour of alternative values using the tie_alts option. tie_alts=Twill cause parameters
within the same module that have multiple alternatives to be expanded in parallel, rather than taking the product of
the alternative sets. So, if option_a has 5 values and option_b has 5 values, instead of producing 25 pipeline
modules, we’ll only produce 5, matching up each pair of values in their alternatives.

[my_module]
type=module.type.path
tie_alts=T
option_a=1|2|3|4|5
option_b=one|two|three|four|five

If you want to tie together the alternative values on some parameters, but not others, you can specify groups of
parameter names to tie using the tie_alts option. Each group is separated by spaces and the names of parameters
to tie within a group are separated by | s. Any parameters that have alternative values but are not specified in one of
the groups are not tied to anything else.

For example, the following module config will tie together option_a’s alternatives with
option_b’s, but produce all combinations of them with option_c ‘s alternatives, resulting
in 3*2=6 versions of the module (my_module[option_a=1~option_b=one~option_c=x],

1.2. Core docs 27

Pimlico Documentation, Release 0.9.23

my_module[option_a=1~option_b=one~option_c=y], my_module[option_a=2~option_b=two~option_c=x],
etc).

[my_module]
type=module.type.path
tie_alts=option_a|option_b
option_a=1|2|3
option_b=one|two|three
option_c=x|y

Using this method, you must give the parameter names in tie_alts exactly as you specify them in the config. For
example, although for a particular module you might be able to specify a certain input (the default) using the name
input or a specific name like input_data, these will not be recognised as being the same parameter in the process
of expanding out the combinations of alternatives.

Naming alternatives

Each module will be given a distinct name, based on the varied parameters. If just one is varied, the names will
be of the form module_name[param_value]. If multiple parameters are varied at once, the names will be
module_name[param_name0=param_value0~param_name1=param_value1~...]. So, the first ex-
ample above will produce: my_module[3], my_module[10] and my_module[20]. And the second will pro-
duce: my_module[num_lines=10~num_chars=3], my_module[num_lines=10~num_chars=10],
etc.

You can also specify your own identifier for the alternative parameter values, instead of using the values themselves
(say, for example, if it’s a long file path). Specify it surrounded by curly braces at the start of the value in the alternatives
list. For example:

[my_module]
type=module.type.path
file_path={small}/home/me/data/corpus/small_version|{big}/home/me/data/corpus/big_

→˓version

This will result in the modules my_module[small] and my_module[big], instead of using the whole file path
to distinguish them.

An alternative approach to naming the expanded alternatives can be selected using the alt_naming parameter. The
default behaviour described above corresponds to alt_naming=full. If you choose alt_naming=pos, the
alternative parameter settings (using names where available, as above) will be distinguished like positional arguments,
without making explicit what parameter each value corresponds to. This can make for nice concise names in cases
where it’s clear what parameters the values refer to.

If you specify alt_naming=full explicitly, you can also give a further option
alt_naming=full(inputnames). This has the effect of removing the input_ from the start of named
inputs. This often makes for intuitive module names, but is not the default behaviour, since there’s no guarantee that
the input name (without the initial input_) does not clash with an option name.

Another possibility, which is occasionally appropriate, is alt_naming=option(<name>), where <name> is the
name of an option that has alternatives. In this case, the names of the alternatives for the whole module will be taken
directly from the alternative names on that option only. (E.g. specified by {name} or inherited from a previous
module, see below). You may specify multiple option names, separated by commas, and the corresponding alt names
will be separated by ~. If there’s only one option with alternatives, this is equivalent to alt_naming=pos. If there
are multiple, it might often lead to name clashes. The circumstance in which this is most commonly appropriate is
where you use tie_alts=T, so it’s sufficient to distinguish the alternatives by the name associated with just one
option.

28 Chapter 1. Contents

Pimlico Documentation, Release 0.9.23

Expanding alternatives down the pipeline

If a module takes input from a module that has been expanded into multiple versions for alternative parameter values, it
too will automatically get expanded, as if all the multiple versions of the previous module had been given as alternative
values for the input parameter. For example, the following will result in 3 versions of my_module (my_module[1],
etc) and 3 corresponding versions of my_next_module (my_next_module[1], etc):

[my_module]
type=module.type.path
option_a=1|2|3

[my_next_module]
type=another.module.type.path
input=my_module

Where possible, names given to the alternative parameter values in the first module will be carried through to the next.

Module variables: passing information through the pipeline

When a pipeline is read in, each module instance has a set of module variables associated with it. In your config
file, you may specify assignments to the variables for a particular module. Each module inherits all of the variable
assignments from modules that it receives its inputs from.

The main reason for having module variables it to be able to do things in later modules that depend on what path
through the pipeline an input came from. Once you have defined the sequence of processing steps that pass module
variables through the pipeline, apply mappings to them, etc, you can use them in the parameters passed into modules.

Basic assignment

Module variables are set by including parameters in a module’s config of the form modvar_<name> = <value>.
This will assign value to the variable name for this module. The simplest form of assignment is just a string literal,
enclosed in double quotes:

[my_module]
type=module.type.path
modvar_myvar = "Value of my variable"

Names of alternatives

Say we have a simple pipeline that has a single source of data, with different versions of the dataset for different
languages (English and Swedish). A series of modules process each language in an identical way and, at the end,
outputs from all languages are collected by a single summary module. This final module may need to know what
language each of its incoming datasets represents, so that it can output something that we can understand.

The two languages are given as alternative values for a parameter path, and the whole pipeline gets automatically
expanded into two paths for the two alternatives:

1.2. Core docs 29

Pimlico Documentation, Release 0.9.23

The summary module gets its two inputs for the two different languages as a multiple-input: this means we could
expand this pipeline to as many languages as we want, just by adding to the input_src module’s path parameter.

However, as far as summary is concerned, this is just a list of datasets – it doesn’t know that one of them is English
and one is Swedish. But let’s say we want it to output a table of results. We’re going to need some labels to identify
the languages.

The solution is to add a module variable to the first module that takes different values when it gets expanded into two
modules. For this, we can use the altname function in a modvar assignment: this assigns the name of the expanded
module’s alternative for a given parameter that has alternatives in the config.

[input_src]
path={en}/to/english | {sv}/to/swedish
modvar_lang=altname(path)

Now the expanded module input_src[en] will have the module variable lang="en" and the Swedish version
lang="sv". This value gets passed from module to module down the two paths in the pipeline.

Other assignment syntax

A further function map allows you to apply a mapping to a value, rather like a Python dictionary lookup. Its first
argument is the value to be mapped (or anything that expands to a value, using modvar assignment syntax). The
second is the mapping. This is simply a space-separated list of source-target mappings of the form source ->
target. Typically both the sources and targets will be string literals.

Now we can give our languages legible names. (Here we’re splitting the definition over multiple indented lines, as
permitted by config file syntax, which makes the mapping easier to read.)

[input_src]
path={en}/to/english | {sv}/to/swedish
modvar_lang=map(

altname(path),
"en" -> "English"
"sv" -> "Svenska")

30 Chapter 1. Contents

Pimlico Documentation, Release 0.9.23

The assignments may also reference variable names, including those previously assigned to in the same module and
those received from the input modules.

[input_src]
path={en}/to/english | {sv}/to/swedish
modvar_lang=altname(path)
modvar_lang_name=map(

lang,
"en" -> "English"
"sv" -> "Svenska")

If a module gets two values for the same variable from multiple inputs, the first value will simply be overridden by the
second. Sometimes it’s useful to map module variables from specific inputs to different modvar names. For example,
if we’re combining two different languages, we might need to keep track of what the two languages we combined
were. We can do this using the notation input_name.var_name, which refers to the value of module variable
var_name that was received from input input_name.

[input_src]
path={en}/to/english | {sv}/to/swedish
modvar_lang=altname(path)

[combiner]
type=my.language.combiner
input_lang_a=lang_data
input_lang_b=lang_data
modvar_first_lang=lang_a.lang
modvar_second_lang=lang_b.lang

If a module inherits multiple values for the same variable from the same input (i.e. a multiple-input), they are all kept
and treated as a list. The most common way to then use the values is via the join function. Like Python’s string.
join, this turns a list into a single string by joining the values with a given separator string. Use join(sep,
list) to join the values coming from some list modvar list on the separator sep.

You can get the number of values in a list modvar using len(list), which works just like Python’s len().

Use in module parameters

To make something in a module’s execution dependent on its module variables, you can insert them into module
parameters.

For example, say we want one of the module’s parameters to make use of the lang variable we defined above:

[input_src]
path={en}/to/english | {sv}/to/swedish
modvar_lang=altname(path)
some_param=$(lang)

Note the difference to other variable substitutions, which use the %(varname)s notation. For modvars, we use the
notation $(varname).

We can also put the value in the middle of other text:

[input_src]
path={en}/to/english | {sv}/to/swedish
modvar_lang=altname(path)
some_param=myval-$(lang)-continues

1.2. Core docs 31

Pimlico Documentation, Release 0.9.23

The modvar processing to compute a particular module’s set of variable assignments is performed before the substitu-
tion. This means that you can do any modvar processing specific to the module instance, in the various ways defined
above, and use the resulting value in other parameters. For example:

[input_src]
path={en}/to/english | {sv}/to/swedish
modvar_lang=altname(path)
modvar_mapped_lang=map(lang,

"en" -> "eng"
"sv" -> "swe"

)
some_param=$(mapped_lang)

You can also place in the $(...) construct any of the variable processing operations shown above for assignments
to module variables. This is a little more concise than first assigning values to modvars, if you don’t need to use the
variables again anywhere else. For example:

[input_src]
path={en}/to/english | {sv}/to/swedish
some_param=$(map(altname(path)),

"en" -> "eng"
"sv" -> "swe"

))

Usage in module code

A module’s executor can also retrieve the values assigned to module variables from the module_variables at-
tribute of the module-info associated with the input dataset. Sometimes this can be useful when you are writing
your own module code, though the above usage to pass values from (or dependent on) module variables into module
parameters is more flexible, so should generally be preferred.

Code in executor
This is a MultipleInput-type input, so we get a list of datasets
datasets = self.info.get_input()
for d in datasets:

language = d.module.module_variables["lang"]

1.2.3 Pipeline variants

You can create several different versions of a pipeline, called pipeline variants in a single config file. The data
corresponding to each will be kept completely separate. This is useful when you want multiple versions of a pipeline
that are almost identical, but have some small differences.

The most common use of this, though by no means the only, is to create a variant that is faster to run than the main
pipeline for the purposes of quickly testing the whole pipeline during development.

Every pipeline has by default one variant, called main. You define other variants simply by using special directives
to mark particular lines as belonging to a particular variant. Lines with no variant marking will appear in all variants.

Loading variants

If you don’t specify otherwise when loading a pipeline, the main variant will be loaded. Use the --variant
parameter (or -v) to specify another variant by name:

32 Chapter 1. Contents

Pimlico Documentation, Release 0.9.23

./pimlico.sh mypipeline.conf -v smaller status

To see a list of all available variants of a particular pipeline, use the variants command:

./pimlico.sh mypipeline.conf variants

Variant directives

Directives are processed when a pipeline config file is read in, before the file is parsed to build a pipeline. They
are lines that begin with %%, followed by the directive name and any arguments. See Directives for details of other
directives.

• variant: This line will be included only when loading a particular variant of a pipeline.

The variant name is specified in the form: variant:variant_name. You may include the line in
more than one variant by specifying multiple names, separated by commas (and no spaces). You can use
the default variant “main”, so that the line will be left out of other variants. The rest of the line, after the
directive and variant name(s) is the content that will be included in those variants.

[my_module]
type=path.to.module
%%variant:main size=52
%%variant:smaller size=7

An alternative notation makes config files more readable. Instead of %%variant:variant_name,
write %%(variant_name). So the above example becomes:

[my_module]
type=path.to.module
%%(main) size=52
%%(smaller) size=7

• novariant: A line to be included only when not loading a variant of the pipeline. Equivalent to
variant:main.

[my_module]
type=path.to.module
%%novariant size=52
%%variant:smaller size=7

Example

The following example config file, defines one variant, small, aside from the default main variant.

[pipeline]
name=myvariants
release=0.8
python_path=%(project_root)s/src/python

Load a dataset
[input_data]
type=pimlico.modules.input.text.raw_text_files
files=%(home)s/data/*

(continues on next page)

1.2. Core docs 33

Pimlico Documentation, Release 0.9.23

(continued from previous page)

For the small version, we cut down the dataset to just 10 documents
We don't need this module at all in the main variant
%%(small) [small_data]
%%(small) type=pimlico.modules.corpora.subset
%%(small) size=10

Tokenize the text
Control where the input data comes from in the different variants
The main variant simply uses the full, uncut corpus
[tokenize]
type=pimlico.modules.text.simple_tokenize
%%(small) input=small_data
%%(main) input=input_data

The main variant will be loaded if you don’t specify otherwise. In this version the module small_data doesn’t exist
at all and tokenize takes its input from input_data.

./pimlico.sh myvariants.conf status

You can load the small variant by giving its name on the command line. This includes the small_data module and
tokenize gets its input from there, making it much faster to test.

./pimlico.sh myvariants.conf -v small status

1.2.4 Pimlico module structure

This document describes the code structure for Pimlico module types in full.

For a basic guide to writing your own modules, see Writing Pimlico modules.

Todo: Write documentation for this

1.2.5 Datatypes

A core concept in Pimlico is the datatype. All inputs and outputs to modules are associated with a datatype and
typechecking ensures that outputs from one module are correctly matched up with inputs to the next.

Datatypes also provide interfaces for reading and writing datasets. They provide different ways of reading in or
iterating over datasets and different ways to write out datasets, as appropriate to the datatype. They are used by
Pimlico to typecheck connections between modules to make sure that the output from one module provides a suitable
type of data for the input to another. They are then also used by the modules to read in their input data coming from
earlier in a pipeline and to write out their output data, to be passed to later modules.

As much as possible, Pimlico pipelines should use standard datatypes to connect up the output of modules
with the input of others. Most datatypes have a lot in common, which should be reflected in their sharing common
base classes. Input modules take care of reading in data from external sources and they provide access to that data in
a way that is identified by a Pimlico datatype.

Class structure

Instances of subclasses of PimlicoDatatype represent the type of datasets and are used for typechecking in
a pipeline. Each datatype has an associated Reader class, accessed by datatype_cls.Reader. These are

34 Chapter 1. Contents

Pimlico Documentation, Release 0.9.23

created automatically and can be instantiated via the datatype instance (by calling it). They are all subclasses of
PimlicoDatatype .Reader.

It is these readers that are used within a pipeline to read a dataset output by an earlier module. In some cases, other
readers may be used: for example, input modules provide standard datatypes at their outputs, but use special readers
to provide access to the external data via the same interface as if the data had been stored within the pipeline.

A similar reflection of the datatype hierarchy is used for dataset writers, which are used to write the outputs from
modules, to be passed to subsequent modules. These are created automatically, just like readers, and are all subclasses
of PimlicoDatatype .Writer. You can get a datatype’s standard writer class via datatype_cls.Writer.
Some datatypes might not provide a writer, but most do.

Note that you do not need to subclass or instantiate Reader, Writer or Setup classes yourself: subclasses are
created automatically to correspond to each reader type. You can, however, add functionality to any of them by
defining a nested class of the same name. It will automatically inherit from the parent datatype’s corresponding class.

Readers

Most of the time, you don’t need to worry about the process of getting hold of a reader, as it is done for you by the
module. From within a module executor, you will usually do this:

reader = self.info.get_input("input_name")

reader is an instance of the datatype’s Reader class, or some other reader class providing the same interface. You
can use it to access the data, for example, iterating over a corpus, or reading in a file, depending on the datatype.

The follow guides describe the process that goes on internally in more detail.

Reader creation

The process of instantiating a reader for a given datatype is as follows:

1. Instantiate the datatype. A datatype instance is always associated with a module input (or output), so you rarely
need to do this explicitly.

2. Use the datatype to instantiate a reader setup, by calling it.

3. Use the reader setup to check that the data is ready to reader by calling ready_to_read().

4. If the data is ready, use the reader setup to instantiate a reader, by calling it.

Reader setup

Reader setup classes provide any functionality relating to a reader needed before it is ready to read and instantiated.
Like readers and writers, they are created automatically, so every Reader class has a Setup nested class.

Most importantly, the setup instance provides the ready_to_read() method, which indicates whether the reader
is ready to be instantiated.

The standard implementation, which can be used in almost all cases, takes a list of possible paths to the dataset at
initialization and checks whether the dataset is ready to be read from any of them. You generally don’t need to
override ready_to_read() with this, but just data_ready(path), which checks whether the data is ready to
be read in a specific location. You can call the parent class’ data-ready checks using super: super(MyDatatype.
Reader.Setup, self).data_ready(path).

The whole Setup object will be passed to the corresponding Reader’s init, so that it has access to data locations,
etc. It can then be accessed as reader.setup.

1.2. Core docs 35

Pimlico Documentation, Release 0.9.23

Subclasses may take different init args/kwargs and store whatever attributes are relevant for preparing their corre-
sponding Reader. In such cases, you will usually override a ModuleInfo’s get_output_reader_setup()
method for a specific output’s reader preparation, to provide it with the appropriate arguments. Do this by calling
the Reader class’ get_setup(*args, **kwargs) class method, which passes args and kwargs through to the
Setup’s init.

You can add functionality to a reader’s setup by creating a nested Setup class. This will inherit from the parent
reader’s setup. This happens automatically – you don’t need to do it yourself and shouldn’t inherit from anything. For
example:

class MyDatatype(PimlicoDatatype):
class Reader:

Overide reader things here

class Setup:
Override setup things here
E.g.:
def data_ready(path):

Parent checks: usually you want to do this
if not super(MyDatatype.Reader.Setup, self).data_ready(path):

return False
Check whether the data's ready according to our own criteria
...
return True

Instantiate a reader setup of the relevant type by calling the datatype. Args and kwargs will be passed through to the
Setup class’ init. They may depend on the particular setup class, but typically one arg is required, which is a list of
paths where the data may be found.

Reader from setup

You can use the reader setup to get a reader, once the data is ready to read.

This is done by simply calling the setup, with the pipeline instance as the first argument and, optionally, the name of
the module that’s currently being run. (If given, this will be used in error output, debugging, etc.)

The procedure then looks something like this:

datatype = ThisDatatype(options...)
Most of the time, you will pass in a list of possible paths to the data
setup = datatype(possible_paths_list)
Now check whether the data is ready to read
if setup.ready_to_read():

reader = setup(pipeline, module="pipeline_module")

Creating a new datatype

This is the typical process for creating a new datatype. Of course, some datatypes do more, and some of the following
is not always necessary, but it’s a good guide for reference.

1. Create the datatype class, which may subclass PimlicoDatatype or some other existing datatype.

2. Specify a datatype_name as a class attribute.

3. Specify software dependencies for reading the data, if any, by overriding
get_software_dependencies() (calling the super method as well).

36 Chapter 1. Contents

Pimlico Documentation, Release 0.9.23

4. Specify software dependencies for writing the data, if any that are not among the reading dependencies, by
overriding get_writer_software_dependencies().

5. Define a nested Reader class to add any methods to the reader for this datatype. The data should be read from
the directory given by its data_dir. It should provide methods for getting different bits of the data, iterating
over it, or whatever is appropriate.

6. Define a nested Setup class within the reader with a data_ready(base_dir) method to check whether
the data in base_dir is ready to be read using the reader. If all that this does is check the exis-
tence of particular filenames or paths within the data dir, you can instead implement the Setup class’
get_required_paths() method to return the paths relative to the data dir.

7. Define a nested Writer class in the datatype to add any methods to the writer for this datatype. The data
should be written to the path given by its data_dir. Provide methods that the user can call to write things to
the dataset. Required elements of the dataset should be specified as a list of strings as the required_tasks
attribute and ticked off as written using task_complete()

8. You may want to specify:

• datatype_options: an OrderedDict of option definitions

• shell_commands: a list of shell commands associated with the datatype

Defining reader functionality

Naturally, different datatypes provide different ways to access their data. You do this by (implicitly) overriding the
datatype’s Reader class and adding methods to it.

As with Setup and Writer classes, you do not need to subclass the Reader explicitly yourself: subclasses are
created automatically to correspond to each datatype. You add functionality to a datatype’s reader by creating a nested
Reader class, which inherits from the parent datatype’s reader. This happens automatically – your nested class
shouldn’t inherit from anything:

class MyDatatype(PimlicoDatatype):
class Reader:

Override reader things here
def get_some_data(self):

Do whatever you need to do to provide access to the dataset
You probably want to use the attribute 'data_dir' to retrieve files
For example:
with open(os.path.join(self.data_dir, "my_file.txt")) as f:

some_data = f.read()
return some_data

1.2.6 Module dependencies

In a Pimlico pipeline, you typically use lots of different external software packages. Some are Python packages, others
system tools, Java libraries, whatever. Even the core modules that core with Pimlico between them depend on a huge
amount of software.

Naturally, we don’t want to have to install all of this software before you can run even a simple Pimlico pipeline that
doesn’t use all (or any) of it. So, we keep the core dependencies of Pimlico to an absolute minimum, and then check
whether the necessary software dependencies are installed each time a pipeline module is going to be run.

1.2. Core docs 37

Pimlico Documentation, Release 0.9.23

Core dependencies

Certain dependencies are required for Pimlico to run at all, or needed so often that you wouldn’t get far without
installing them. These are defined in pimlico.core.dependencies.core, and when you run the Pimlico
command-line interface, it checks they’re available and tries to install them if they’re not.

Module dependencies

Each module type defines its own set of software dependencies, if it has any. When you try to run the module, Pimlico
runs some checks to try to make sure that all of these are available.

If some of them are not, it may be possible to install them automatically, straight from Pimlico. In particular, many
Python packages can be very easily installed using Pip. If this is the case for one of the missing dependencies, Pimlico
will tell you in the error output, and you can install them using the install command (with the module name/number
as an argument).

Virtualenv

In order to simplify automatic installation, Pimlico is always run within a virtual environment, using Virtualenv. This
means that any Python packages installed by Pip will live in a local directory within the Pimlico codebase that you’re
running and won’t interfere with anything else on your system.

When you run Pimlico for the first time, it will create a new virtualenv for this purpose. Every time you run it after
that, it will use this same environment, so anything you install will continue to be available.

Custom virtualenv

Most of the time, you don’t even need to be aware of the virtualenv that Python’s running in1. Under certain circum-
stances, you might need to use a custom virtualenv.

For example, say you’re running your pipeline over different servers, but have the pipeline and Pimlico codebase on a
shared network drive. Then you can find that the software installed in the virtualenv on one machine is incompatible
with the system-wide software on the other.

You can specify a name for a custom virtualenv using the environment variable PIMENV. The first time you run
Pimlico with this set, it will automatically create the new virtualenv.

$ PIMENV=myenv ./pimlico.sh mypipeline.conf status

Replace myenv with a name that better reflects its use (e.g. name of the server).

Every time you run Pimlico on that server, set the PIMENV environment variable in the same way.

In case you want to get to the virtualenv itself, you can find it in pimlico/lib/virtualenv/myenv.

Note: Pimlico previously used another environment variable VIRTUALENV, which gave a path to the virtualenv. You
can still use this, but, unless you have a good reason to, it’s easier to use PIMENV.

1 If you’re interested, it lives in pimlico/lib/virtualenv/default

38 Chapter 1. Contents

https://pypi.python.org/pypi/pip
https://virtualenv.pypa.io/en/stable/

Pimlico Documentation, Release 0.9.23

Defining module dependencies

Todo: Describe how module dependencies are defined for different types of deps

Some examples

Todo: Include some examples from the core modules of how deps are defined and some special cases of software
fetching

1.2.7 Local configuration

As well as knowing about the pipeline you’re running, Pimlico also needs to know some things about the setup of the
system on which you’re running it. This is completely independent of the pipeline config: the same pipeline can be
run on different systems with different local setups.

A couple of settings must always be provided for Pimlico: the long-term and short-term stores (see Data stores
below). Other system settings may be specified as necessary. (At the time of writing, there aren’t any, but they will be
documented here as they arise.) See Other Pimlico settings below.

Specific modules may also have system-level settings. For example, a module that calls an external tool may need to
know the location of that tool, or how much memory it can use on this system. Any that apply to the built-in Pimlico
modules are listed below in Settings for built-in modules.

Local config file location

Pimlico looks in various places to find the local config settings. Settings are loaded in a particular order,
overriding earlier versions of the same setting as we go (see pimlico.core.config.PipelineConfig.
load_local_config()).

Settings are specified with the following order of precedence (those later override the earlier):

local config file < host-specific config file < cmd-line overrides

Most often, you’ll just specify all settings in the main local config file. This is a file in your home directory named
.pimlico. This must exist for Pimlico to be able to run at all.

Host-specific config

If you share your home directory between different computers (e.g. a networked filesystem), the above setup could
cause a problem, as you may need a different local config on the different computers. Pimlico allows you to have
special config files that only get read on machines will a particular hostname.

For example, say I have two computers, localbox and remotebox, which share a home directory. I’ve created my
.pimlico local config file on localbox, but need to specify a different storage location on remotebox. I simply
create another config file called .pimlico_remotebox``[#hostname]_. Pimlico will load first
the basic local config in ``.pimlico and then override those settings with what it reads from the
host-specific config file.

1.2. Core docs 39

Pimlico Documentation, Release 0.9.23

You can also specify a hostname prefix to match. Say I’ve got a whole load of computers I want to be able to run on,
with hostnames remotebox1, remotebox2, etc. If I create a config file called .pimlico_remotebox-, it will
be used on all of these hosts.

Command-line overrides

Occasionally, you might want to specify a local config setting just for one run of Pimlico. Use the
--override-local-config (or -l) to specify a value for an individual setting in the form setting=value.
For example:

./pimlico.sh mypipeline.conf -l somesetting=5 run mymodule

If you want to override multiple settings, simply use the option multiple times.

Custom location

If the above solutions don’t work for you, you can also explicitly specify on the command line an alternative location
from which to load the local config file that Pimlico typically expects to find in ~/.pimlico.

Use the --local-config parameter to give a filename to use instead of the ~/.pimlico.

For example, if your home directory is shared across servers and the above hostname-specific config solution doesn’t
work in your case, you can fall back to pointing Pimlico at your own host-specific config file.

Data stores

Pimlico needs to know where to put and find output files as it executes. Settings are given in the local config, since
they apply to all Pimlico pipelines you run and may vary from system to system. Note that Pimlico will make sure
that different pipelines don’t interfere with each other’s output (provided you give them different names): all pipelines
store their output and look for their input within these same base locations.

See Data storage for an explanation of Pimlico’s data store system.

At least one store must be given in the local config:

store=/path/to/storage/root

You may specify as many storage locations as you like, giving each a name:

store_fast=/path/to/fast/store
store_big=/path/to/big/store

If you specify named stores and an unnamed one, the unnamed one will be used as the default output store. Otherwise,
the first in the file will be the default.

store=/path/to/a/store # This will be the default output store
store_fast=/path/to/fast/store # These will be additional, named stores
store_big=/path/to/big/store

Other Pimlico settings

In future, there will no doubt be more settings that you can specify at the system level for Pimlico. These will be
documented here as they arise.

40 Chapter 1. Contents

Pimlico Documentation, Release 0.9.23

Settings for built-in modules

Specific modules may consult the local config to allow you to specify settings for them. We cannot document them
here for all modules, as we don’t know what modules are being developed outside the core codebase. However, we
can provide a list here of the settings consulted by built-in Pimlico modules.

There aren’t any yet, but they will be listed here as they arise.

Footnotes:

1.2.8 Data storage

Pimlico needs to know where to put and find output files as it executes, in order to store data and pass it between
modules. On any particular system running Pimlico, multiple locations (stores) may be used as storage and Pimlico
will check all of them when it’s looking for a module’s data.

Single store

Let’s start with a simple setup with just one store. A setting store in the local config (see Local configuration)
specifies the root directory of this store. This applies to all Pimlico pipelines you run on this system and Pimlico will
make sure that different pipelines don’t interfere with each other’s output (provided you give them different names).

When you run a pipeline module, its output will be stored in a subdirectory specific to that pipeline and that module
with the store’s root directory. When Pimlico needs to use that data as input to another module, it will look in the
appropriate directory within the store.

Multiple stores

For various reasons, you may wish to store Pimlico data in multiple locations.

For example, one common scenario is that you have access to a disk that is fast to write to (call it fast-disk), but not
very big, and another disk (e.g. over a network filesystem) that has lots of space, but is slower (call it big-disk). You
therefore want Pimlico to output its data, much of which might only be used fleetingly and then no longer needed, to
fast-disk, so the processing runs quickly. Then, you want to move the output from certain modules over to big-disk, to
make space on fast-disk.

We can define two stores for Pimlico to use and give them names. The first (“fast”) will be used to output data to
(just like the sole store in the previous section). The second (“big”), however, will also be checked for module data,
meaning that we can move data from “fast” to “big” whenever we like.

Instead of using the store parameter in the local config, we use multiple store_<name> parameters. One of them
(the first one, or the one given by store with no name, if you include that) we be treated as the default output store.

Specific the locations in the local config like this:

store_fast=/path/to/fast/store
store_big=/path/to/big/store

Remember, these paths are not specific to a pipeline: all pipelines will use different subdirectories of these ones.

To check what stores you’ve got in your current configuration, use the stores command.

1.2. Core docs 41

Pimlico Documentation, Release 0.9.23

Moving data between stores

Say you’ve got a two-store setup like in the previous example. You’ve now run a module that produces a lot of output
and want to move it to your big disk and have Pimlico read it from there.

You don’t need to replicate the directory structure yourself and move module output between stores. Pimlico has a
command movestores to do this for you. Specify the name of the store you want to move data to (big in this case)
and the names or numbers of the modules whose data you want to move.

Once you’ve done that, Pimlico should continue to behave as it did before, just as if the data was still in its original
location.

Updating from the old storage system

Prior to v0.8, Pimlico used a different system of storage locations. If you have a local config file (~/.pimlico) from
an earlier version you will see deprecation warnings.

Change something like this:

long_term_store=/path/to/long/store
short_term_store=/path/to/short/store

to something like this:

store_long=/path/to/long/store
store_short=/path/to/short/store

Or, if you only ever needed one storage location, simply this:

store=/path/to/store

1.2.9 Python scripts

All the heavy work of your data-processing is implemented in Pimlico modules, either by loading core Pimlico mod-
ules from your pipeline config file or by writing your own modules. Sometimes, however, it can be handy to write a
quick Python script to get hold of the output of one of your pipeline’s modules and inspect it or do something with it.

This can be easily done writing a Python script and using the python shell command to run it. This command loads
your pipeline config (just like all others) and then either runs a script you’ve specified on the command line, or enters
an interactive Python shell. The advantages of this over just running the normal python command on the command
line are that the script is run in the same execution context used for your pipeline (e.g. using the Pimlico instance’s
virtualenv) and that the loaded pipeline is available to you, so you can easily can hold of its data locations, datatypes,
etc.

Accessing the pipeline

At the top of your Python script, you can get hold of the loaded pipeline config instance like this:

from pimlico.cli.pyshell import get_pipeline

pipeline = get_pipeline()

Now you can use this to get to, among other things, the pipeline’s modules and their input and output datasets. A
module called module1 can be accessed by treating the pipeline like a dict:

42 Chapter 1. Contents

Pimlico Documentation, Release 0.9.23

module = pipeline["module1"]

This gives you the ModuleInfo instance for that module, giving access to its inputs, outputs, options, etc:

data = module.get_output("output_name")

Writing and running scripts

All of the above code to access a pipeline can be put in a Python script somewhere in your codebase and run from the
command line. Let’s say I create a script src/python/scripts/myscript.py containing:

from pimlico.cli.pyshell import get_pipeline

pipeline = get_pipeline()
module = pipeline["module1"]
data = module.get_output("output_name")
Here we can start probing the data using whatever interface the datatype provides
print data

Now I can run this from the root directory of my project as follows:

./pimlico.sh mypipeline.conf python src/python/scripts/myscript.py

1.3 Core Pimlico modules

Pimlico comes with a substantial collection of module types that provide wrappers around existing NLP and machine
learning tools, as well as a number of general tools for processing datasets that are useful for many applications.

1.3.1 !! candc

Note: This module has not yet been updated to the new datatype system, so cannot be used yet. Soon it will be
updated.

1.3.2 !! corenlp

Note: This module has not yet been updated to the new datatype system, so cannot be used yet. Soon it will be
updated.

1.3.3 Corpus manipulation

Core modules for generic manipulation of mainly iterable corpora.

1.3. Core Pimlico modules 43

Pimlico Documentation, Release 0.9.23

Corpus concatenation

Path pimlico.modules.corpora.concat
Executable no

Concatenate two (or more) corpora to produce a bigger corpus.

They must have the same data point type, or one must be a subtype of the other.

This is a filter module. It is not executable, so won’t appear in a pipeline’s list of modules that can be run. It produces
its output for the next module on the fly when the next module needs it.

Inputs

Name Type(s)
corpora list of iterable_corpus

Outputs

Name Type(s)
corpus corpus with data-point from input

Example config

This is an example of how this module can be used in a pipeline config file.

[my_concat_module]
type=pimlico.modules.corpora.concat
input_corpora=module_a.some_output

Test pipelines

This module is used by the following test pipelines. They are a further source of examples of the module’s usage.

• concat

Corpus statistics

Path pimlico.modules.corpora.corpus_stats
Executable yes

Some basic statistics about tokenized corpora

Counts the number of tokens, sentences and distinct tokens in a corpus.

44 Chapter 1. Contents

Pimlico Documentation, Release 0.9.23

Inputs

Name Type(s)
corpus grouped_corpus <TokenizedDocumentType>

Outputs

Name Type(s)
stats named_file

Example config

This is an example of how this module can be used in a pipeline config file.

[my_corpus_stats_module]
type=pimlico.modules.corpora.corpus_stats
input_corpus=module_a.some_output

Test pipelines

This module is used by the following test pipelines. They are a further source of examples of the module’s usage.

• stats

Human-readable formatting

Path pimlico.modules.corpora.format
Executable yes

Corpus formatter

Pimlico provides a data browser to make it easy to view documents in a tarred document corpus. Some datatypes
provide a way to format the data for display in the browser, whilst others provide multiple formatters that display the
data in different ways.

This module allows you to use this formatting functionality to output the formatted data as a corpus. Since the
formatting operations are designed for display, this is generally only useful to output the data for human consumption.

Inputs

Name Type(s)
corpus grouped_corpus

1.3. Core Pimlico modules 45

Pimlico Documentation, Release 0.9.23

Outputs

Name Type(s)
formatted grouped_corpus <RawTextDocumentType>

Options

Name Description Type
for-
mat-
ter

Fully qualified class name of a formatter to use to format the data. If not specified, the default
formatter is used, which uses the datatype’s browser_display attribute if available, or falls back to
just converting documents to unicode

string

Example config

This is an example of how this module can be used in a pipeline config file.

[my_format_module]
type=pimlico.modules.corpora.format
input_corpus=module_a.some_output

This example usage includes more options.

[my_format_module]
type=pimlico.modules.corpora.format
input_corpus=module_a.some_output
formatter=path.to.formatter.FormatterClass

Test pipelines

This module is used by the following test pipelines. They are a further source of examples of the module’s usage.

• tokenized_formatter

Archive grouper (filter)

Path pimlico.modules.corpora.group
Executable no

Group the data points (documents) of an iterable corpus into fixed-size archives. This is a standard thing to do at
the start of the pipeline, since it’s a handy way to store many (potentially small) files without running into filesystem
problems.

The documents are simply grouped linearly into a series of groups (archives) such that each (apart from the last)
contains the given number of documents.

After grouping documents in this way, document map modules can be called on the corpus and the grouping will be
preserved as the corpus passes through the pipeline.

46 Chapter 1. Contents

Pimlico Documentation, Release 0.9.23

Note: This module used to be called tar_filter, but has been renamed in keeping with other changes in the new
datatype system.

There also used to be a tar module that wrote the grouped corpus to disk. This has now been removed, since most
of the time it’s fine to use this filter module instead. If you really want to store the grouped corpus, you can use the
store module.

This is a filter module. It is not executable, so won’t appear in a pipeline’s list of modules that can be run. It produces
its output for the next module on the fly when the next module needs it.

Inputs

Name Type(s)
documents iterable_corpus

Outputs

Name Type(s)
documents grouped corpus with input doc type

Options

Name Description Type
archive_basename Base name to use for archive tar files. The archive number is appended to this. (Default:

‘archive’)
string

archive_size Number of documents to include in each archive (default: 1k) int

Example config

This is an example of how this module can be used in a pipeline config file.

[my_group_module]
type=pimlico.modules.corpora.group
input_documents=module_a.some_output

This example usage includes more options.

[my_group_module]
type=pimlico.modules.corpora.group
input_documents=module_a.some_output
archive_basename=archive
archive_size=1000

1.3. Core Pimlico modules 47

Pimlico Documentation, Release 0.9.23

Test pipelines

This module is used by the following test pipelines. They are a further source of examples of the module’s usage.

• store

• group

Interleaved corpora

Path pimlico.modules.corpora.interleave
Executable no

Interleave data points from two (or more) corpora to produce a bigger corpus.

Similar to concat, but interleaves the documents when iterating. Preserves the order of documents within corpora
and takes documents two each corpus in inverse proportion to its length, i.e. spreads out a smaller corpus so we don’t
finish iterating over it earlier than the longer one.

They must have the same data point type, or one must be a subtype of the other.

In theory, we could find the most specific common ancestor and use that as the output type, but this is not currently
implemented and may not be worth the trouble. Perhaps we will add this in future.

This is a filter module. It is not executable, so won’t appear in a pipeline’s list of modules that can be run. It produces
its output for the next module on the fly when the next module needs it.

Inputs

Name Type(s)
corpora list of grouped_corpus

Outputs

Name Type(s)
corpus grouped corpus with input doc type

Options

Name Description Type
archive_basenameDocuments are regrouped into new archives. Base name to use for archive tar files. The

archive number is appended to this. (Default: ‘archive’)
string

archive_size Documents are regrouped into new archives. Number of documents to include in each archive
(default: 1k)

string

48 Chapter 1. Contents

Pimlico Documentation, Release 0.9.23

Example config

This is an example of how this module can be used in a pipeline config file.

[my_interleave_module]
type=pimlico.modules.corpora.interleave
input_corpora=module_a.some_output

This example usage includes more options.

[my_interleave_module]
type=pimlico.modules.corpora.interleave
input_corpora=module_a.some_output
archive_basename=archive
archive_size=1000

Test pipelines

This module is used by the following test pipelines. They are a further source of examples of the module’s usage.

• interleave

Corpus document list filter

Path pimlico.modules.corpora.list_filter
Executable yes

Similar to split, but instead of taking a random split of the dataset, splits it according to a given list of documents,
putting those in the list in one set and the rest in another.

Inputs

Name Type(s)
corpus grouped_corpus
list string_list

Outputs

Name Type(s)
set1 grouped corpus with input doc type
set2 grouped corpus with input doc type

Example config

This is an example of how this module can be used in a pipeline config file.

1.3. Core Pimlico modules 49

Pimlico Documentation, Release 0.9.23

[my_list_filter_module]
type=pimlico.modules.corpora.list_filter
input_corpus=module_a.some_output
input_list=module_a.some_output

Test pipelines

This module is used by the following test pipelines. They are a further source of examples of the module’s usage.

• list_filter

Random shuffle

Path pimlico.modules.corpora.shuffle
Executable yes

Randomly shuffles all the documents in a grouped corpus, outputting them to a new set of archives with the same sizes
as the input archives.

It is difficult to do this efficiently for a large corpus. We use a strategy where the input documents are read in linear
order and placed into a temporary set of small archives (“bins”). Then these are concatenated into the larger archives,
shuffling the documents in memory in each during the process.

The expected average size of the temporary bins can be set using the bin_size parameter. Alternatively, the exact
total number of bins to use can be set using the num_bins parameter.

It may be necessary to lower the bin size if, for example, your individual documents are very large files. You might
also find the process is noticeably faster with a higher bin size if your files are small.

Inputs

Name Type(s)
corpus grouped_corpus

Outputs

Name Type(s)
corpus grouped corpus with input doc type

50 Chapter 1. Contents

Pimlico Documentation, Release 0.9.23

Options

Name Description Type
archive_basenameBasename to use for archives in the output corpus. Default: ‘archive’ string
bin_size Target expected size of temporary bins into which documents are shuffled. The actual size may

vary, but they will on average have this size. Default: 100
int

keep_archive_namesBy default, it is assumed that all doc names are unique to the whole corpus, so the same doc names
are used once the documents are put into their new archives. If doc names are only unique within
the input archives, use this and the input archive names will be included in the output document
names. Default: False

bool

num_binsDirectly set the number of temporary bins to put document into. If set, bin_size is ignored int

Example config

This is an example of how this module can be used in a pipeline config file.

[my_shuffle_module]
type=pimlico.modules.corpora.shuffle
input_corpus=module_a.some_output

This example usage includes more options.

[my_shuffle_module]
type=pimlico.modules.corpora.shuffle
input_corpus=module_a.some_output
archive_basename=archive
bin_size=100
keep_archive_names=F
num_bins=0

Test pipelines

This module is used by the following test pipelines. They are a further source of examples of the module’s usage.

• shuffle

Corpus split

Path pimlico.modules.corpora.split
Executable yes

Split a tarred corpus into two subsets. Useful for dividing a dataset into training and test subsets. The output datasets
have the same type as the input. The documents to put in each set are selected randomly. Running the module multiple
times will give different splits.

Note that you can use this multiple times successively to split more than two ways. For example, say you wanted a
training set with 80% of your data, a dev set with 10% and a test set with 10%, split it first into training and non-training
80-20, then split the non-training 50-50 into dev and test.

The module also outputs a list of the document names that were included in the first set. Optionally, it outputs the
same thing for the second input too. Note that you might prefer to only store this list for the smaller set: e.g. in a

1.3. Core Pimlico modules 51

Pimlico Documentation, Release 0.9.23

training-test split, store only the test document list, as the training list will be much larger. In such a case, just put the
smaller set first and don’t request the optional output doc_list2.

Inputs

Name Type(s)
corpus grouped_corpus

Outputs

Name Type(s)
set1 grouped corpus with input doc type
set2 grouped corpus with input doc type
doc_list1 string_list

Optional

Name Type(s)
doc_list2 string_list

Options

Name Description Type
set1_sizeProportion of the corpus to put in the first set, float between 0.0 and 1.0. If an integer >1 is given,

this is treated as the absolute number of documents to put in the first set, rather than a proportion.
Default: 0.2 (20%)

float

Example config

This is an example of how this module can be used in a pipeline config file.

[my_split_module]
type=pimlico.modules.corpora.split
input_corpus=module_a.some_output

This example usage includes more options.

[my_split_module]
type=pimlico.modules.corpora.split
input_corpus=module_a.some_output
set1_size=0.20

52 Chapter 1. Contents

Pimlico Documentation, Release 0.9.23

Test pipelines

This module is used by the following test pipelines. They are a further source of examples of the module’s usage.

• split

Store a corpus

Path pimlico.modules.corpora.store
Executable yes

Store a corpus

Take documents from a corpus and write them to disk using the standard writer for the corpus’ data point type. This
is useful where documents are produced on the fly, for example from some filter module or from an input reader, but
where it is desirable to store the produced corpus for further use, rather than always running the filters/readers each
time the corpus’ documents are needed.

Inputs

Name Type(s)
corpus grouped_corpus

Outputs

Name Type(s)
corpus grouped corpus with input doc type

Example config

This is an example of how this module can be used in a pipeline config file.

[my_store_module]
type=pimlico.modules.corpora.store
input_corpus=module_a.some_output

Test pipelines

This module is used by the following test pipelines. They are a further source of examples of the module’s usage.

• filter_map

• filter_tokenize

1.3. Core Pimlico modules 53

Pimlico Documentation, Release 0.9.23

Corpus subset

Path pimlico.modules.corpora.subset
Executable no

Simple filter to truncate a dataset after a given number of documents, potentially offsetting by a number of documents.
Mainly useful for creating small subsets of a corpus for testing a pipeline before running on the full corpus.

Can be run on an iterable corpus or a tarred corpus. If the input is a tarred corpus, the filter will emulate a tarred corpus
with the appropriate datatype, passing through the archive names from the input.

When a number of valid documents is required (calculating corpus length when skipping invalid docs), if one is stored
in the metadata as valid_documents, that count is used instead of iterating over the data to count them up.

This is a filter module. It is not executable, so won’t appear in a pipeline’s list of modules that can be run. It produces
its output for the next module on the fly when the next module needs it.

Inputs

Name Type(s)
corpus iterable_corpus

Outputs

Name Type(s)
corpus corpus with data-point from input

Options

Name Description Type
off-
set

Number of documents to skip at the beginning of the corpus (default: 0, start at beginning) int

size (required) Number of documents to include int
skip_invalidSkip over any invalid documents so that the output subset contains the chosen number of (valid)

documents (or as many as possible) and no invalid ones. By default, invalid documents are passed
through and counted towards the subset size

bool

Example config

This is an example of how this module can be used in a pipeline config file.

[my_subset_module]
type=pimlico.modules.corpora.subset
input_corpus=module_a.some_output
size=100

This example usage includes more options.

54 Chapter 1. Contents

Pimlico Documentation, Release 0.9.23

[my_subset_module]
type=pimlico.modules.corpora.subset
input_corpus=module_a.some_output
offset=0
size=100
skip_invalid=T

Test pipelines

This module is used by the following test pipelines. They are a further source of examples of the module’s usage.

• subset

Corpus vocab builder

Path pimlico.modules.corpora.vocab_builder
Executable yes

Builds a dictionary (or vocabulary) for a tokenized corpus. This is a data structure that assigns an integer ID to every
distinct word seen in the corpus, optionally applying thresholds so that some words are left out.

Similar to pimlico.modules.features.vocab_builder, which builds two vocabs, one for terms and one
for features.

Inputs

Name Type(s)
text grouped_corpus <TokenizedDocumentType>

Outputs

Name Type(s)
vocab dictionary

1.3. Core Pimlico modules 55

Pimlico Documentation, Release 0.9.23

Options

NameDescription Type
in-
clude

Ensure that certain words are always included in the vocabulary, even if they don’t make it past
the various filters, or are never seen in the corpus. Give as a comma-separated list

comma-
separated
list of
strings

limit Limit vocab size to this number of most common entries (after other filters) int
max_propInclude terms that occur in max this proportion of documents float
oov Use the final index the represent chars that will be out of vocabulary after applying thresh-

old/limit filters. Applied even if the count is 0. Represent OOVs using the given string in the
vocabulary

string

prune_atPrune the dictionary if it reaches this size. Setting a lower value avoids getting stuck with too
big a dictionary to be able to prune and slowing things down, but means that the final pruning
will less accurately reflect the true corpus stats. Should be considerably higher than limit (if
used). Set to 0 to disable. Default: 2M (Gensim’s default)

int

thresh-
old

Minimum number of occurrences required of a term to be included int

Example config

This is an example of how this module can be used in a pipeline config file.

[my_vocab_builder_module]
type=pimlico.modules.corpora.vocab_builder
input_text=module_a.some_output

This example usage includes more options.

[my_vocab_builder_module]
type=pimlico.modules.corpora.vocab_builder
input_text=module_a.some_output
include=word1,word2,...
limit=10k
oov=value
prune_at=2000000
threshold=100

Test pipelines

This module is used by the following test pipelines. They are a further source of examples of the module’s usage.

• vocab_builder

Token frequency counter

Path pimlico.modules.corpora.vocab_counter
Executable yes

56 Chapter 1. Contents

Pimlico Documentation, Release 0.9.23

Count the frequency of each token of a vocabulary in a given corpus (most often the corpus on which the vocabulary
was built).

Note that this distribution is not otherwise available along with the vocabulary. It stores the document frequency counts
- how many documents each token appears in - which may sometimes be a close enough approximation to the actual
frequencies. But, for example, when working with character-level tokens, this estimate will be very poor.

The output will be a 1D array whose size is the length of the vocabulary, or the length plus one, if oov_excluded=T
(used if the corpus has been mapped so that OOVs are represented by the ID vocab_size+1, instead of having a
special token).

Inputs

Name Type(s)
corpus grouped_corpus <IntegerListsDocumentType>
vocab dictionary

Outputs

Name Type(s)
distribution numpy_array

Options

Name Description Type
oov_excludedIndicates that the corpus has been mapped so that OOVs are represented by the ID vocab_size+1,

instead of having a special token in the vocab
bool

Example config

This is an example of how this module can be used in a pipeline config file.

[my_vocab_counter_module]
type=pimlico.modules.corpora.vocab_counter
input_corpus=module_a.some_output
input_vocab=module_a.some_output

This example usage includes more options.

[my_vocab_counter_module]
type=pimlico.modules.corpora.vocab_counter
input_corpus=module_a.some_output
input_vocab=module_a.some_output
oov_excluded=T

Test pipelines

This module is used by the following test pipelines. They are a further source of examples of the module’s usage.

1.3. Core Pimlico modules 57

Pimlico Documentation, Release 0.9.23

• vocab_counter

Tokenized corpus to ID mapper

Path pimlico.modules.corpora.vocab_mapper
Executable yes

Maps all the words in a tokenized textual corpus to integer IDs, storing just lists of integers in the output.

This is typically done before doing things like training models on textual corpora. It ensures that a consistent mapping
from words to IDs is used throughout the pipeline. The training modules use this pre-mapped form of input, instead
of performing the mapping as they read the data, because it is much more efficient if the corpus needs to be iterated
over many times, as is typical in model training.

First use the vocab_builder module to construct the word-ID mapping and filter the vocabulary as you wish, then
use this module to apply the mapping to the corpus.

Inputs

Name Type(s)
text grouped_corpus <TokenizedDocumentType>
vocab dictionary

Outputs

Name Type(s)
ids grouped_corpus <IntegerListsDocumentType>

Options

Name Description Type
oov If given, special token to map all OOV tokens to. Otherwise, use vocab_size+1 as index. Special

value ‘skip’ simply skips over OOV tokens
string

Example config

This is an example of how this module can be used in a pipeline config file.

[my_vocab_mapper_module]
type=pimlico.modules.corpora.vocab_mapper
input_text=module_a.some_output
input_vocab=module_a.some_output

This example usage includes more options.

58 Chapter 1. Contents

Pimlico Documentation, Release 0.9.23

[my_vocab_mapper_module]
type=pimlico.modules.corpora.vocab_mapper
input_text=module_a.some_output
input_vocab=module_a.some_output
oov=value

Test pipelines

This module is used by the following test pipelines. They are a further source of examples of the module’s usage.

• vocab_mapper

1.3.4 Embeddings

Modules for extracting features from which to learn word embeddings from corpora, and for training embeddings.

Some of these don’t actually learn the embeddings, they just produce features which can then be fed into an embedding
learning module, such as a form of matrix factorization. Note that you can train embeddings not only using the
trainers here, but also using generic matrix manipulation techniques, for example the factorization methods provided
by sklearn.

!! dependencies

Note: This module has not yet been updated to the new datatype system, so cannot be used yet. Soon it will be
updated.

Store embeddings (internal)

Path pimlico.modules.embeddings.store_embeddings
Executable yes

Simply stores embeddings in the Pimlico internal format.

This is not often needed, but can be useful if reading embeddings for an input reader that is slower than reading from
the internal format. Then you can use this module to do the reading and store the result before passing it to other
modules.

Inputs

Name Type(s)
embeddings embeddings

1.3. Core Pimlico modules 59

Pimlico Documentation, Release 0.9.23

Outputs

Name Type(s)
embeddings embeddings

Example config

This is an example of how this module can be used in a pipeline config file.

[my_store_embeddings_module]
type=pimlico.modules.embeddings.store_embeddings
input_embeddings=module_a.some_output

Store in TSV format

Path pimlico.modules.embeddings.store_tsv
Executable yes

Takes embeddings stored in the default format used within Pimlico pipelines (see Embeddings) and stores them as
TSV files.

This is for using the vectors outside your pipeline, for example, for distributing them publicly or using as input to an
external visualization tool. For passing embeddings between Pimlico modules, the internal Embeddings datatype
should be used.

These are suitable as input to the Tensorflow Projector.

Inputs

Name Type(s)
embeddings embeddings

Outputs

Name Type(s)
embeddings tsv_vec_files

Example config

This is an example of how this module can be used in a pipeline config file.

[my_store_tsv_module]
type=pimlico.modules.embeddings.store_tsv
input_embeddings=module_a.some_output

60 Chapter 1. Contents

https://projector.tensorflow.org/

Pimlico Documentation, Release 0.9.23

Test pipelines

This module is used by the following test pipelines. They are a further source of examples of the module’s usage.

• tsvvec_store

Store in word2vec format

Path pimlico.modules.embeddings.store_word2vec
Executable yes

Takes embeddings stored in the default format used within Pimlico pipelines (see Embeddings) and stores them
using the word2vec storage format.

This is for using the vectors outside your pipeline, for example, for distributing them publicly. For passing embeddings
between Pimlico modules, the internal Embeddings datatype should be used.

The output contains a bin file, containing the vectors in the binary format, and a vocab file, containing the vocabulary
and word counts.

Uses the Gensim implementation of the storage, so depends on Gensim.

Inputs

Name Type(s)
embeddings embeddings

Outputs

Name Type(s)
embeddings word2vec_files

Example config

This is an example of how this module can be used in a pipeline config file.

[my_store_word2vec_module]
type=pimlico.modules.embeddings.store_word2vec
input_embeddings=module_a.some_output

Test pipelines

This module is used by the following test pipelines. They are a further source of examples of the module’s usage.

• word2vec_store

1.3. Core Pimlico modules 61

Pimlico Documentation, Release 0.9.23

Word2vec embedding trainer

Path pimlico.modules.embeddings.word2vec
Executable yes

Word2vec embedding learning algorithm, using Gensim’s implementation.

Find out more about word2vec.

This module is simply a wrapper to call Gensim Python (+C)’s implementation of word2vec on a Pimlico corpus.

Inputs

Name Type(s)
text grouped_corpus <TokenizedDocumentType>

Outputs

Name Type(s)
model embeddings

Options

Name Description Type
iters number of iterations over the data to perform. Default: 5 int
min_count word2vec’s min_count option: prunes the dictionary of words that appear fewer than this

number of times in the corpus. Default: 5
int

nega-
tive_samples

number of negative samples to include per positive. Default: 5 int

size number of dimensions in learned vectors. Default: 200 int

Example config

This is an example of how this module can be used in a pipeline config file.

[my_word2vec_module]
type=pimlico.modules.embeddings.word2vec
input_text=module_a.some_output

This example usage includes more options.

[my_word2vec_module]
type=pimlico.modules.embeddings.word2vec
input_text=module_a.some_output
iters=5
min_count=5
negative_samples=5
size=200

62 Chapter 1. Contents

https://radimrehurek.com/gensim/
https://code.google.com/archive/p/word2vec/
https://radimrehurek.com/gensim/models/word2vec.html

Pimlico Documentation, Release 0.9.23

Test pipelines

This module is used by the following test pipelines. They are a further source of examples of the module’s usage.

• word2vec_train

1.3.5 Feature set processing

Various tools for generic processing of extracted sets of features: building vocabularies, mapping to integer indices,
etc.

!! term_feature_compiler

Note: This module has not yet been updated to the new datatype system, so cannot be used yet. Soon it will be
updated.

!! term_feature_matrix_builder

Note: This module has not yet been updated to the new datatype system, so cannot be used yet. Soon it will be
updated.

!! vocab_builder

Note: This module has not yet been updated to the new datatype system, so cannot be used yet. Soon it will be
updated.

!! vocab_mapper

Note: This module has not yet been updated to the new datatype system, so cannot be used yet. Soon it will be
updated.

1.3.6 Gensim topic modelling

Modules providing access to topic model training and other routines from Gensim.

LDA trainer

Path pimlico.modules.gensim.lda
Executable yes

1.3. Core Pimlico modules 63

https://radimrehurek.com/gensim/

Pimlico Documentation, Release 0.9.23

Trains LDA using Gensim’s basic LDA implementation, or the multicore version.

Todo: Add test pipeline and test

Inputs

Name Type(s)
corpus grouped_corpus <IntegerListsDocumentType>
vocab dictionary

Outputs

Name Type(s)
model lda_model

64 Chapter 1. Contents

https://radimrehurek.com/gensim/models/ldamodel.html
https://radimrehurek.com/gensim/models/ldamulticore.html

Pimlico Documentation, Release 0.9.23

Options

Name Description Type
alpha Alpha prior over topic distribution. May be one of special values ‘symmetric’, ‘asym-

metric’ and ‘auto’, or a single float, or a list of floats. Default: symmetric
‘symmetric’,
‘asymmetric’,
‘auto’ or a float

chunk-
size

Model’s chunksize parameter. Chunk size to use for distributed/multicore computing.
Default: 2000

int

decay Decay parameter. Default: 0.5 float
dis-
tributed

Turn on distributed computing. Default: False. Ignored by multicore implementation bool

eta Eta prior of word distribution. May be one of special values ‘auto’ and ‘symmetric’,
or a float. Default: symmetric

‘symmetric’,
‘auto’ or a float

eval_every int
gamma_threshold float
ig-
nore_terms

Ignore any of these terms in the bags of words when iterating over the corpus to train
the model. Typically, you’ll want to include an OOV term here if your corpus has
one, and any other special terms that are not part of a document’s content

comma-
separated list
of strings

itera-
tions

Max number of iterations in each update. Default: 50 int

mini-
mum_phi_value

float

mini-
mum_probability

float

multi-
core

Use Gensim’s multicore implementation of LDA training (gen-
sim.models.ldamulticore). Default is to use gensim.models.ldamodel. Number
of cores used for training set by Pimlico’s processes parameter

bool

num_topicsNumber of topics for the trained model to have. Default: 100 int
offset Offset parameter. Default: 1.0 float
passes Passes parameter. Default: 1 int
tfidf Transform word counts using TF-IDF when presenting documents to the model for

training. Default: False
bool

up-
date_every

Model’s update_every parameter. Default: 1. Ignored by multicore implementation int

Example config

This is an example of how this module can be used in a pipeline config file.

[my_lda_trainer_module]
type=pimlico.modules.gensim.lda
input_corpus=module_a.some_output
input_vocab=module_a.some_output

This example usage includes more options.

[my_lda_trainer_module]
type=pimlico.modules.gensim.lda
input_corpus=module_a.some_output
input_vocab=module_a.some_output
alpha=symmetric

(continues on next page)

1.3. Core Pimlico modules 65

Pimlico Documentation, Release 0.9.23

(continued from previous page)

chunksize=2000
decay=0.50
distributed=F
eta=symmetric
eval_every=10
gamma_threshold=0.00
ignore_terms=
iterations=50
minimum_phi_value=0.01
minimum_probability=0.01
multicore=F
num_topics=100
offset=1.00
passes=1
tfidf=F
update_every=1

LDA document topic analysis

Path pimlico.modules.gensim.lda_doc_topics
Executable yes

Takes a trained LDA model and produces the topic vector for every document in a corpus.

The corpus is given as integer lists documents, which are the integer IDs of the words in each sentence of each
document. It is assumed that the corpus uses the same vocabulary to map to integer IDs as the LDA model’s training
corpus, so no further mapping needs to be done.

Todo: Add test pipeline and test

Inputs

Name Type(s)
corpus grouped_corpus <IntegerListsDocumentType>
model lda_model

Outputs

Name Type(s)
vectors grouped_corpus <VectorDocumentType>

Example config

This is an example of how this module can be used in a pipeline config file.

66 Chapter 1. Contents

Pimlico Documentation, Release 0.9.23

[my_lda_doc_topics_module]
type=pimlico.modules.gensim.lda_doc_topics
input_corpus=module_a.some_output
input_model=module_a.some_output

1.3.7 Input readers

Various input readers for various datatypes. These are used to read in data from some external source, such as a corpus
in its distributed format (e.g. XML files or a collection of text files), and present it to the Pimlico pipeline as a Pimlico
dataset, which can be used as input to other modules.

They do not typically store the data as a Pimlico dataset, but produce it on the fly, although sometimes it could be
appropriate to do otherwise.

Note that there can be multiple input readers for a single datatype. For example, there are many ways to read in a
corpus of raw text documents, depending on the format they’re stored in. They might by in one big XML file, text
files collected into compressed archives, a big text file with document separators, etc. These all require their own input
reader and all of them produce the same output corpus type.

Embeddings

Read vector embeddings (e.g. word embeddings) from various storage formats.

There are several formats in common usage and we provide readers for most of these here: FastText, word2vec and
GloVe.

FastText embedding reader

Path pimlico.modules.input.embeddings.fasttext
Executable yes

Reads in embeddings from the FastText format, storing them in the format used internally in Pimlico for embeddings.

Can be used, for example, to read the pre-trained embeddings offered by Facebook AI.

Currently only reads the text format (.vec), not the binary format (.bin).

See also:

pimlico.modules.input.embeddings.fasttext_gensim: An alternative reader that uses Gensim’s
FastText format reading code and permits reading from the binary format, which contains more information.

Inputs

No inputs

Outputs

Name Type(s)
embeddings embeddings

1.3. Core Pimlico modules 67

https://github.com/facebookresearch/fastText
https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md

Pimlico Documentation, Release 0.9.23

Options

Name Description Type
limit Limit to the first N words. Since the files are typically ordered from most to least frequent, this

limits to the N most common words
int

path (required) Path to the FastText embedding file string

Example config

This is an example of how this module can be used in a pipeline config file.

[my_fasttext_embedding_reader_module]
type=pimlico.modules.input.embeddings.fasttext
path=value

This example usage includes more options.

[my_fasttext_embedding_reader_module]
type=pimlico.modules.input.embeddings.fasttext
limit=0
path=value

Test pipelines

This module is used by the following test pipelines. They are a further source of examples of the module’s usage.

• fasttext_input_test

FastText embedding reader (Gensim)

Path pimlico.modules.input.embeddings.fasttext_gensim
Executable yes

Reads in embeddings from the FastText format, storing them in the format used internally in Pimlico for embeddings.
This version uses Gensim’s implementation of the format reader, so depends on Gensim.

Can be used, for example, to read the pre-trained embeddings offered by Facebook AI.

Reads only the binary format (.bin), not the text format (.vec).

See also:

pimlico.modules.input.embeddings.fasttext: An alternative reader that does not use Gensim. It per-
mits (only) reading the text format.

Todo: Add test pipeline. This is slightly difficult, as we need a small FastText binary file, which is harder to produce,
since you can’t easily just truncate a big file.

68 Chapter 1. Contents

https://github.com/facebookresearch/fastText
https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md

Pimlico Documentation, Release 0.9.23

Inputs

No inputs

Outputs

Name Type(s)
embeddings embeddings

Options

Name Description Type
path (required) Path to the FastText embedding file (.bin) string

Example config

This is an example of how this module can be used in a pipeline config file.

[my_fasttext_embedding_reader_gensim_module]
type=pimlico.modules.input.embeddings.fasttext_gensim
path=value

GloVe embedding reader (Gensim)

Path pimlico.modules.input.embeddings.glove
Executable yes

Reads in embeddings from the GloVe format, storing them in the format used internally in Pimlico for embeddings.
We use Gensim’s implementation of the format reader, so the module depends on Gensim.

Can be used, for example, to read the pre-trained embeddings offered by Stanford.

Note that the format is almost identical to word2vec’s text format.

Note that this requires a recent version of Gensim, since they changed their KeyedVectors data structure. This is not
enforced by the dependency check, since we’re not able to require a specific version yet.

Inputs

No inputs

Outputs

Name Type(s)
embeddings embeddings

1.3. Core Pimlico modules 69

https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/

Pimlico Documentation, Release 0.9.23

Options

Name Description Type
path (required) Path to the GloVe embedding file string

Example config

This is an example of how this module can be used in a pipeline config file.

[my_glove_embedding_reader_module]
type=pimlico.modules.input.embeddings.glove
path=value

Test pipelines

This module is used by the following test pipelines. They are a further source of examples of the module’s usage.

• glove_input_test

Word2vec embedding reader (Gensim)

Path pimlico.modules.input.embeddings.word2vec
Executable yes

Reads in embeddings from the word2vec format, storing them in the format used internally in Pimlico for embeddings.
We use Gensim’s implementation of the format reader, so the module depends on Gensim.

Can be used, for example, to read the pre-trained embeddings offered by Google.

Inputs

No inputs

Outputs

Name Type(s)
embeddings embeddings

Options

Name Description Type
binary Assume input is in word2vec binary format. Default: True bool
path (required) Path to the word2vec embedding file (.bin) string

70 Chapter 1. Contents

https://code.google.com/archive/p/word2vec/
https://code.google.com/archive/p/word2vec/

Pimlico Documentation, Release 0.9.23

Example config

This is an example of how this module can be used in a pipeline config file.

[my_word2vec_embedding_reader_module]
type=pimlico.modules.input.embeddings.word2vec
path=value

This example usage includes more options.

[my_word2vec_embedding_reader_module]
type=pimlico.modules.input.embeddings.word2vec
binary=T
path=value

Text corpora

Raw text archives

Path pimlico.modules.input.text.raw_text_archives
Executable yes

Input reader for raw text file collections stored in archives. Reads archive files from arbitrary locations specified by a
list of and iterates over the files they contain.

The input paths must be absolute paths, but remember that you can make use of various special substitutions in the
config file to give paths relative to your project root, or other locations.

Unlike raw_text_files, globs are not permitted. There’s no reason why they could not be, but they are not
allowed for now, to keep these modules simpler. This feature could be added, or if you need it, you could create your
own input reader module based on this one.

All paths given are assumed to be required for the dataset to be ready, unless they are preceded by a ?.

It can take a long time to count up the files in an archive, if there are a lot of them, as we need to iterate over the whole
archive. If a file is found with a path and name identical to the tar archive’s, with the suffix .count, a document
count will be read from there and used instead of counting. Make sure it is correct, as it will be blindly trusted, which
will cause difficulties in your pipeline if it’s wrong! The file is expected to contain a single integer as text.

All files in the archive are included. If you wish to filter files or preprocess them somehow, this can be easily done
by subclassing RawTextArchivesInputReader and overriding appropriate bits, e.g. RawTextArchivesInpu-
tReader.Setup.iter_archive_infos(). You can then use this reader to create an input reader module with the factory
function, as is done here.

See also:

raw_text_files for raw files not in archives

This is an input module. It takes no pipeline inputs and is used to read in data

Inputs

No inputs

1.3. Core Pimlico modules 71

Pimlico Documentation, Release 0.9.23

Outputs

Name Type(s)
corpus grouped_corpus <RawTextDocumentType>

Options

Name Description Type
archive_basenameBase name to use for archive tar files. The archive number is appended to this. (Default:

‘archive’)
string

archive_sizeNumber of documents to include in each archive (default: 1k) int
encoding Encoding to assume for input files. Default: utf8 string
encod-
ing_errors

What to do in the case of invalid characters in the input while decoding (e.g. illegal utf-8
chars). Select ‘strict’ (default), ‘ignore’, ‘replace’. See Python’s str.decode() for details

string

files (required) Comma-separated list of absolute paths to files to include in the collection. Place
a ‘?’ at the start of a filename to indicate that it’s optional

absolute
file path

Example config

This is an example of how this module can be used in a pipeline config file.

[my_raw_text_archives_reader_module]
type=pimlico.modules.input.text.raw_text_archives
files=path1,path2,...

This example usage includes more options.

[my_raw_text_archives_reader_module]
type=pimlico.modules.input.text.raw_text_archives
archive_basename=archive
archive_size=1000
encoding=utf8
encoding_errors=strict
files=path1,path2,...

Raw text files

Path pimlico.modules.input.text.raw_text_files
Executable no

Input reader for raw text file collections. Reads in files from arbitrary locations specified by a list of globs.

The input paths must be absolute paths (or globs), but remember that you can make use of various special substitutions
in the config file to give paths relative to your project root, or other locations.

The file paths may use globs to match multiple files. By default, it is assumed that every filename should exist and
every glob should match at least one file. If this does not hold, the dataset is assumed to be not ready. You can override
this by placing a ? at the start of a filename/glob, indicating that it will be included if it exists, but is not depended on
for considering the data ready to use.

72 Chapter 1. Contents

https://docs.python.org/2/library/glob.html

Pimlico Documentation, Release 0.9.23

This is an input module. It takes no pipeline inputs and is used to read in data

Inputs

No inputs

Outputs

Name Type(s)
corpus grouped_corpus <RawTextDocumentType>

Options

Name Description Type
archive_basenameBase name to use for archive tar files. The archive number is appended to this. (Default:

‘archive’)
string

archive_sizeNumber of documents to include in each archive (default: 1k) int
en-
cod-
ing

Encoding to assume for input files. Default: utf8 string

en-
cod-
ing_errors

What to do in the case of invalid characters in the input while decoding (e.g. illegal utf-8
chars). Select ‘strict’ (default), ‘ignore’, ‘replace’. See Python’s str.decode() for details

string

ex-
clude

A list of files to exclude. Specified in the same way as files (except without line ranges).
This allows you to specify a glob in files and then exclude individual files from it (you can
use globs here too)

absolute file
path

files (required) Comma-separated list of absolute paths to files to include in the collection. Paths
may include globs. Place a ‘?’ at the start of a filename to indicate that it’s optional. You
can specify a line range for the file by adding ‘:X-Y’ to the end of the path, where X is the
first line and Y the last to be included. Either X or Y may be left empty. (Line numbers are
1-indexed.)

comma-
separated
list of (line
range-
limited) file
paths

Example config

This is an example of how this module can be used in a pipeline config file.

[my_raw_text_files_reader_module]
type=pimlico.modules.input.text.raw_text_files
files=path1,path2,...

This example usage includes more options.

[my_raw_text_files_reader_module]
type=pimlico.modules.input.text.raw_text_files
archive_basename=archive
archive_size=1000
encoding=utf8

(continues on next page)

1.3. Core Pimlico modules 73

Pimlico Documentation, Release 0.9.23

(continued from previous page)

encoding_errors=strict
exclude=path1,path2,...
files=path1,path2,...

Annotated text

Datasets that store text with accompanying annotations, like POS tags or dependency parses.

There are lots of different ways of storing this type of data in common usage. Here we currently only implement
variants on one – the VRT format, used by Korp. In future, others should be added, e.g. CoNLL dependency parses.

Datatypes exist for some of these, which should be converted to input readers in due course.

VRT annotated text files

Path pimlico.modules.input.text_annotations.vrt_text
Executable yes

Input reader for VRT text collections (VeRticalized Text, as used by Korp:), just for reading the (tokenized) text
content, throwing away all the annotations.

Uses sentence tags to divide each text into sentences.

See also:

pimlico.modules.input.text_annotations.vrt: Reading VRT files with all their annotations

Todo: Update to new datatypes system and add test pipeline

Todo: Currently skipped from module doc generator, until updated

This is an input module. It takes no pipeline inputs and is used to read in data

Inputs

No inputs

Outputs

Name Type(s)
corpus grouped_corpus <TokenizedDocumentType>

74 Chapter 1. Contents

https://www.kielipankki.fi/development/korp/corpus-input-format/#VRT_file_format

Pimlico Documentation, Release 0.9.23

Options

Name Description Type
archive_basenameBase name to use for archive tar files. The archive number is appended to this. (Default:

‘archive’)
string

archive_sizeNumber of documents to include in each archive (default: 1k) int
en-
cod-
ing

Encoding to assume for input files. Default: utf8 string

en-
cod-
ing_errors

What to do in the case of invalid characters in the input while decoding (e.g. illegal utf-8
chars). Select ‘strict’ (default), ‘ignore’, ‘replace’. See Python’s str.decode() for details

string

ex-
clude

A list of files to exclude. Specified in the same way as files (except without line ranges).
This allows you to specify a glob in files and then exclude individual files from it (you can
use globs here too)

absolute file
path

files (required) Comma-separated list of absolute paths to files to include in the collection. Paths
may include globs. Place a ‘?’ at the start of a filename to indicate that it’s optional. You
can specify a line range for the file by adding ‘:X-Y’ to the end of the path, where X is the
first line and Y the last to be included. Either X or Y may be left empty. (Line numbers are
1-indexed.)

comma-
separated
list of (line
range-
limited) file
paths

Example config

This is an example of how this module can be used in a pipeline config file.

[my_vrt_files_reader_module]
type=pimlico.modules.input.text_annotations.vrt_text
files=path1,path2,...

This example usage includes more options.

[my_vrt_files_reader_module]
type=pimlico.modules.input.text_annotations.vrt_text
archive_basename=archive
archive_size=1000
encoding=utf8
encoding_errors=strict
exclude=path1,path2,...
files=path1,path2,...

Raw text files

Path pimlico.modules.input.xml
Executable yes

Input reader for XML file collections. Gigaword, for example, is stored in this way. The data retrieved from the files
is plain unicode text.

1.3. Core Pimlico modules 75

Pimlico Documentation, Release 0.9.23

Todo: Add test pipeline

This is an input module. It takes no pipeline inputs and is used to read in data

Inputs

No inputs

Outputs

Name Type(s)
corpus grouped_corpus <RawTextDocumentType>

Options

Name Description Type
archive_basenameBase name to use for archive tar files. The archive number is appended to this. (Default:

‘archive’)
string

archive_sizeNumber of documents to include in each archive (default: 1k) int
docu-
ment_name_attr

Attribute of document nodes to get document name from. Use special value ‘filename’
to use the filename (without extensions) as a document name. In this case, if there’s
more than one doc in a file, an integer is appended to the doc name after the first doc.
(Default: ‘filename’)

string

docu-
ment_node_type

XML node type to extract documents from (default: ‘doc’) string

en-
cod-
ing

Encoding to assume for input files. Default: utf8 string

en-
cod-
ing_errors

What to do in the case of invalid characters in the input while decoding (e.g. illegal
utf-8 chars). Select ‘strict’ (default), ‘ignore’, ‘replace’. See Python’s str.decode() for
details

string

ex-
clude

A list of files to exclude. Specified in the same way as files (except without line ranges).
This allows you to specify a glob in files and then exclude individual files from it (you
can use globs here too)

absolute file
path

files (required) Comma-separated list of absolute paths to files to include in the collection.
Paths may include globs. Place a ‘?’ at the start of a filename to indicate that it’s
optional

absolute file
path

fil-
ter_on_doc_attr

Comma-separated list of key=value constraints. If given, only docs with the attribute
‘key’ on their doc node and the attribute value ‘value’ will be included

comma-
separated list
of key=value
constraints

Example config

This is an example of how this module can be used in a pipeline config file.

76 Chapter 1. Contents

Pimlico Documentation, Release 0.9.23

[my_raw_text_files_reader_module]
type=pimlico.modules.input.xml
files=path1,path2,...

This example usage includes more options.

[my_raw_text_files_reader_module]
type=pimlico.modules.input.xml
archive_basename=archive
archive_size=1000
document_name_attr=filename
document_node_type=doc
encoding=utf8
encoding_errors=strict
exclude=path1,path2,...
files=path1,path2,...
filter_on_doc_attr=value

1.3.8 Malt dependency parser

Wrapper around the Malt dependency parser and data format converters to support connections to other modules.

!! conll_parser_input

Note: This module has not yet been updated to the new datatype system, so cannot be used yet. Soon it will be
updated.

!! parse

Note: This module has not yet been updated to the new datatype system, so cannot be used yet. Soon it will be
updated.

1.3.9 NLTK

Modules that wrap functionality in the Natural Language Toolkit (NLTK).

Currently, not much is provided here, but adding new modules is easy to do, so hopefully more modules will gradually
appear.

NIST tokenizer

Path pimlico.modules.nltk.nist_tokenize
Executable yes

Sentence splitting and tokenization using the NLTK NIST tokenizer.

1.3. Core Pimlico modules 77

http://www.maltparser.org/
https://www.nltk.org/api/nltk.tokenize.html#module-nltk.tokenize.nist

Pimlico Documentation, Release 0.9.23

Very simple tokenizer that’s fairly language-independent and doesn’t need a trained model. Use this if you just need a
rudimentary tokenization (though more sophisticated than simple_tokenize).

Inputs

Name Type(s)
text grouped_corpus <RawTextDocumentType>

Outputs

Name Type(s)
documents grouped_corpus <TokenizedDocumentType>

Options

Name Description Type
lowercase Lowercase all output. Default: False bool
non_european Use the tokenizer’s international_tokenize() method instead of tokenize(). Default: False bool

Example config

This is an example of how this module can be used in a pipeline config file.

[my_nltk_nist_tokenizer_module]
type=pimlico.modules.nltk.nist_tokenize
input_text=module_a.some_output

This example usage includes more options.

[my_nltk_nist_tokenizer_module]
type=pimlico.modules.nltk.nist_tokenize
input_text=module_a.some_output
lowercase=F
non_european=F

Test pipelines

This module is used by the following test pipelines. They are a further source of examples of the module’s usage.

• nltk_nist_tokenize

1.3.10 OpenNLP modules

A collection of module types to wrap individual OpenNLP tools.

78 Chapter 1. Contents

Pimlico Documentation, Release 0.9.23

!! coreference

Note: This module has not yet been updated to the new datatype system, so cannot be used yet. Soon it will be
updated.

!! coreference_pipeline

Note: This module has not yet been updated to the new datatype system, so cannot be used yet. Soon it will be
updated.

!! ner

Note: This module has not yet been updated to the new datatype system, so cannot be used yet. Soon it will be
updated.

!! parse

Note: This module has not yet been updated to the new datatype system, so cannot be used yet. Soon it will be
updated.

!! pos

Note: This module has not yet been updated to the new datatype system, so cannot be used yet. Soon it will be
updated.

OpenNLP tokenizer

Path pimlico.modules.opennlp.tokenize
Executable yes

Sentence splitting and tokenization using OpenNLP’s tools.

Sentence splitting may be skipped by setting the option tokenize_only=T. The tokenizer will then assume that each
line in the input file represents a sentence and tokenize within the lines.

1.3. Core Pimlico modules 79

Pimlico Documentation, Release 0.9.23

Inputs

Name Type(s)
text grouped_corpus <TextDocumentType>

Outputs

Name Type(s)
documents grouped_corpus <TokenizedDocumentType>

Options

Name Description Type
sen-
tence_model

Sentence segmentation model. Specify a full path, or just a filename. If a filename is given it is
expected to be in the opennlp model directory (models/opennlp/)

string

to-
ken_model

Tokenization model. Specify a full path, or just a filename. If a filename is given it is expected
to be in the opennlp model directory (models/opennlp/)

string

tok-
enize_only

By default, sentence splitting is performed prior to tokenization. If tokenize_only is set, only
the tokenization step is executed

bool

Example config

This is an example of how this module can be used in a pipeline config file.

[my_opennlp_tokenizer_module]
type=pimlico.modules.opennlp.tokenize
input_text=module_a.some_output

This example usage includes more options.

[my_opennlp_tokenizer_module]
type=pimlico.modules.opennlp.tokenize
input_text=module_a.some_output
sentence_model=en-sent.bin
token_model=en-token.bin
tokenize_only=F

Test pipelines

This module is used by the following test pipelines. They are a further source of examples of the module’s usage.

• opennlp_tokenize

1.3.11 Output modules

Modules that only have inputs and write output to somewhere outside the Pimlico pipeline.

80 Chapter 1. Contents

Pimlico Documentation, Release 0.9.23

Text corpus directory

Path pimlico.modules.output.text_corpus
Executable yes

Output module for producing a directory containing a text corpus, with documents stored in separate files.

The input must be a raw text grouped corpus. Corpora with other document types can be converted to raw text using
the format module.

Inputs

Name Type(s)
corpus grouped_corpus <RawTextDocumentType>

Outputs

No outputs

Options

Name Description Type
archive_dirsCreate a subdirectory for each archive of the grouped corpus to store that archive’s documents in.

Otherwise, all documents are stored in the same directory (or subdirectories where the document
names include directory separators)

bool

in-
valid

What to do with invalid documents (where there’s been a problem reading/processing the document
somewhere in the pipeline). ‘skip’ (default): don’t output the document at all. ‘empty’: output an
empty file

‘skip’
or
‘empty’

path (required) Directory to write the corpus to string
suf-
fix

Suffix to use for each document’s filename string

tar Add all files to a single tar archive, instead of just outputting to disk in the given directory. This
is a good choice for very large corpora, for which storing to files on disk can cause filesystem
problems. If given, the value is used as the basename for the tar archive. Default: do not output tar

string

Example config

This is an example of how this module can be used in a pipeline config file.

[my_text_corpus_module]
type=pimlico.modules.output.text_corpus
input_corpus=module_a.some_output
path=value

This example usage includes more options.

1.3. Core Pimlico modules 81

Pimlico Documentation, Release 0.9.23

[my_text_corpus_module]
type=pimlico.modules.output.text_corpus
input_corpus=module_a.some_output
archive_dirs=T
invalid=skip
path=value
suffix=value
tar=value

1.3.12 R interfaces

Modules for interfacing with the statistical programming language R. Currently, we provide just a simple way to pass
data from the output of another module into an R script and run it. In the future, it may be appropriate to add more
sophisticated interfaces, or expose R’s functionality in a more specialised way, integrating more closely with Pimlico’s
datatype system.

!! script

Note: This module has not yet been updated to the new datatype system, so cannot be used yet. Soon it will be
updated.

1.3.13 Regular expressions

!! annotated_text

Note: This module has not yet been updated to the new datatype system, so cannot be used yet. Soon it will be
updated.

1.3.14 Scikit-learn tools

Scikit-learn (‘sklearn’) provides easy-to-use implementations of a large number of machine-learning methods, based
on Numpy/Scipy.

You can build Numpy arrays from your corpus using the feature processing tools and then use them as
input to Scikit-learn’s tools using the modules in this package.

Sklearn logistic regression

Path pimlico.modules.sklearn.logistic_regression
Executable yes

Provides an interface to Scikit-Learn’s simple logistic regression trainer.

You may also want to consider using:

• LogisticRegressionCV: LR with cross-validation to choose regularization strength

82 Chapter 1. Contents

https://www.r-project.org/
http://scikit-learn.org/stable/
http://scipy.org/
http://scikit-learn.org/stable/
scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegressionCV.html

Pimlico Documentation, Release 0.9.23

• SGDClassifier: general gradient-descent training for classifiers, which includes logistic regression. A better
choice for training on a large dataset.

Inputs

Name Type(s)
features scored_real_feature_sets

Outputs

Name Type(s)
model sklearn_model

Options

Name Description Type
op-
tions

Options to pass into the constructor of LogisticRegression, formatted as a JSON dictionary (po-
tentially without the {}s). E.g.: ‘“C”:1.5, “penalty”:”l2”’

JSON
dict

Example config

This is an example of how this module can be used in a pipeline config file.

[my_sklearn_log_reg_module]
type=pimlico.modules.sklearn.logistic_regression
input_features=module_a.some_output

This example usage includes more options.

[my_sklearn_log_reg_module]
type=pimlico.modules.sklearn.logistic_regression
input_features=module_a.some_output
options="C":1.5, "penalty":"l2"

!! matrix_factorization

Note: This module has not yet been updated to the new datatype system, so cannot be used yet. Soon it will be
updated.

1.3.15 Document-level text filters

Simple text filters that are applied at the document level, i.e. each document in a TarredCorpus is processed one at
a time. These perform relatively simple processing, not relying on external software or involving lengthy processing
times. They are therefore most often used using the filter=T option, so that the processing is performed on the fly.

1.3. Core Pimlico modules 83

scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html

Pimlico Documentation, Release 0.9.23

Such filters are needed sometimes just to convert before different datapoint formats.

Probably a good deal of these will be added in due course.

Text to character level

Path pimlico.modules.text.char_tokenize
Executable yes

Filter to treat text data as character-level tokenized data. This makes it simple to train character-level models, since
the output appears exactly like a tokenized document, where each token is a single character. You can then feed it into
any module that expects tokenized text.

Inputs

Name Type(s)
corpus grouped_corpus <TextDocumentType>

Outputs

Name Type(s)
corpus grouped_corpus <CharacterTokenizedDocumentType>

Example config

This is an example of how this module can be used in a pipeline config file.

[my_char_tokenize_module]
type=pimlico.modules.text.char_tokenize
input_corpus=module_a.some_output

Test pipelines

This module is used by the following test pipelines. They are a further source of examples of the module’s usage.

• simple_tokenize

Normalize tokenized text

Path pimlico.modules.text.normalize
Executable yes

Perform text normalization on tokenized documents.

Currently, this includes only the following:

84 Chapter 1. Contents

Pimlico Documentation, Release 0.9.23

• case normalization (to upper or lower case)

• blank line removal

• empty sentence removal

In the future, more normalization operations may be added.

Inputs

Name Type(s)
corpus grouped_corpus <TokenizedDocumentType>

Outputs

Name Type(s)
corpus grouped_corpus <TokenizedDocumentType>

Options

Name Description Type
case Transform all text to upper or lower case. Choose from ‘upper’ or ‘lower’, or

leave blank to not perform transformation
‘upper’,
‘lower’ or ‘’

re-
move_empty

Skip over any empty sentences (i.e. blank lines) bool

re-
move_only_punct

Skip over any sentences that are empty if punctuation is ignored bool

Example config

This is an example of how this module can be used in a pipeline config file.

[my_normalize_module]
type=pimlico.modules.text.normalize
input_corpus=module_a.some_output

This example usage includes more options.

[my_normalize_module]
type=pimlico.modules.text.normalize
input_corpus=module_a.some_output
case=
remove_empty=F
remove_only_punct=F

Test pipelines

This module is used by the following test pipelines. They are a further source of examples of the module’s usage.

1.3. Core Pimlico modules 85

Pimlico Documentation, Release 0.9.23

• normalize

Simple tokenization

Path pimlico.modules.text.simple_tokenize
Executable yes

Tokenize raw text using simple splitting.

This is useful where either you don’t mind about the quality of the tokenization and just want to test something quickly,
or text is actually already tokenized, but stored as a raw text datatype.

If you want to do proper tokenization, consider either the CoreNLP or OpenNLP core modules.

Inputs

Name Type(s)
corpus grouped_corpus <TextDocumentType>

Outputs

Name Type(s)
corpus grouped_corpus <TokenizedDocumentType>

Options

Name Description Type
splitter Character or string to split on. Default: space string

Example config

This is an example of how this module can be used in a pipeline config file.

[my_simple_tokenize_module]
type=pimlico.modules.text.simple_tokenize
input_corpus=module_a.some_output

This example usage includes more options.

[my_simple_tokenize_module]
type=pimlico.modules.text.simple_tokenize
input_corpus=module_a.some_output
splitter=

86 Chapter 1. Contents

Pimlico Documentation, Release 0.9.23

Test pipelines

This module is used by the following test pipelines. They are a further source of examples of the module’s usage.

• simple_tokenize

Normalize raw text

Path pimlico.modules.text.text_normalize
Executable yes

Text normalization for raw text documents.

Similar to normalize module, but operates on raw text, not pre-tokenized text, so provides a slightly different set
of tools.

Inputs

Name Type(s)
corpus grouped_corpus <TextDocumentType>

Outputs

Name Type(s)
corpus grouped_corpus <RawTextDocumentType>

Options

Name Description Type
blank_linesRemove all blank lines (after whitespace stripping, if requested) bool
case Transform all text to upper or lower case. Choose from ‘upper’ or ‘lower’, or leave

blank to not perform transformation
‘upper’,
‘lower’ or ‘’

strip Strip whitespace from the start and end of lines bool

Example config

This is an example of how this module can be used in a pipeline config file.

[my_text_normalize_module]
type=pimlico.modules.text.text_normalize
input_corpus=module_a.some_output

This example usage includes more options.

1.3. Core Pimlico modules 87

Pimlico Documentation, Release 0.9.23

[my_text_normalize_module]
type=pimlico.modules.text.text_normalize
input_corpus=module_a.some_output
blank_lines=T
case=
strip=T

Test pipelines

This module is used by the following test pipelines. They are a further source of examples of the module’s usage.

• normalize

1.3.16 General utilities

General utilities for things like filesystem manipulation.

!! alias

Note: This module has not yet been updated to the new datatype system, so cannot be used yet. Soon it will be
updated.

!! collect_files

Note: This module has not yet been updated to the new datatype system, so cannot be used yet. Soon it will be
updated.

!! copy_file

Note: This module has not yet been updated to the new datatype system, so cannot be used yet. Soon it will be
updated.

1.3.17 Visualization tools

Modules for plotting and suchlike

!! bar_chart

Note: This module has not yet been updated to the new datatype system, so cannot be used yet. Soon it will be
updated.

88 Chapter 1. Contents

Pimlico Documentation, Release 0.9.23

Embedding space plotter

Path pimlico.modules.visualization.embeddings_plot
Executable yes

Plot vectors from embeddings, trained by some other module, in a 2D space using a MDS reduction and Matplotlib.

They might, for example, come from pimlico.modules.embeddings.word2vec. The embeddings are read
in using Pimlico’s generic word embedding storage type.

Uses scikit-learn to perform the MDS/TSNE reduction.

The module outputs a Python file for doing the plotting (plot.py) and a CSV file containing the vector data (data.
csv) that is used as input to the plotting. The Python file is then run to produce (if it succeeds) an output PDF
(plot.pdf).

The idea is that you can use these source files (plot.py and data.csv) as a template and adjust the plotting code
to produce a perfect plot for inclusion in your paper, website, desktop wallpaper, etc.

Inputs

Name Type(s)
vectors list of embeddings

Outputs

Name Type(s)
plot named_file_collection

Options

NameDescription Type
cmap Mapping from word prefixes to matplotlib plotting colours. Every word beginning with the

given prefix has the prefix removed and is plotted in the corresponding colour. Specify as a
JSON dictionary mapping prefix strings to colour strings

JSON string

col-
ors

List of colours to use for different embedding sets. Should be a list of matplotlib colour
strings, one for each embedding set given in input_vectors

absolute file
path

met-
ric

Distance metric to use. Choose from ‘cosine’, ‘euclidean’, ‘manhattan’. Default: ‘cosine’ ‘cosine’, ‘eu-
clidean’ or
‘manhattan’

re-
duc-
tion

Dimensionality reduction technique to use to project to 2D. Available: mds (Multi-
dimensional Scaling), tsne (t-distributed Stochastic Neighbor Embedding). Default: mds

‘mds’ or
‘tsne’

skip Number of most frequent words to skip, taking the next most frequent after these. Default:
0

int

words Number of most frequent words to plot. Default: 50 int

1.3. Core Pimlico modules 89

Pimlico Documentation, Release 0.9.23

Example config

This is an example of how this module can be used in a pipeline config file.

[my_embeddings_plot_module]
type=pimlico.modules.visualization.embeddings_plot
input_vectors=module_a.some_output

This example usage includes more options.

[my_embeddings_plot_module]
type=pimlico.modules.visualization.embeddings_plot
input_vectors=module_a.some_output
cmap={"key1":"value"}
colors=path1,path2,...
metric=cosine
reduction=mds
skip=0
words=50

Test pipelines

This module is used by the following test pipelines. They are a further source of examples of the module’s usage.

• embeddings_plot

1.4 Command-line interface

The main Pimlico command-line interface (usually accessed via pimlico.sh in your project root) provides subcom-
mands to perform different operations. Call it like so, using one of the subcommands documented below to access
particular functionality:

./pimlico.sh <config-file> [general options...] <subcommand> [subcommand args/options]

The commands you are likely to use most often are: status, run, reset and maybe browse.

For a reference for each command’s options, see the command-line documentation: ./pimlico.sh --help, for
a general reference and ./pimlico.sh <config_file> <command> --help for a specific subcommand’s
reference.

Below is a more detailed guide for each subcommand, including all of the documentation available via the command
line.

90 Chapter 1. Contents

Pimlico Documentation, Release 0.9.23

browse View the data output by a module
clean Remove all module output directories that do not correspond to a module in the pipeline
deps List information about software dependencies: whether they’re available, versions, etc
dump Dump the entire available output data from a given pipeline module to a tarball
email Test email settings and try sending an email using them
fixlength Check the length of written outputs and fix it if it’s wrong
inputs Show the (expected) locations of the inputs of a given module
install Install missing module library dependencies
load Load a module’s output data from a tarball previously created by the dump command
movestores Move data between stores
newmodule Create a new module type
output Show the location where the given module’s output data will be (or has been) stored
python Load the pipeline config and enter a Python interpreter with access to it in the environment
recover Examine and fix a partially executed map module’s output state after forcible termination
reset Delete any output from the given module and restore it to unexecuted state
run Execute an individual pipeline module, or a sequence
shell Open a shell to give access to the data output by a module
status Output a module execution schedule for the pipeline and execution status for every module
stores List named Pimlico stores
unlock Forcibly remove an execution lock from a module
variants List the available variants of a pipeline config
visualize Comming soon. . . visualize the pipeline in a pretty way

1.4.1 status

Command-line tool subcommand

Output a module execution schedule for the pipeline and execution status for every module.

Usage:

pimlico.sh [...] status [module_name] [-h] [--all] [--short] [--history] [--deps-of
→˓DEPS_OF] [--no-color]

Positional arguments

Arg Description
[module_name]Optionally specify a module name (or number). More detailed status information will be outut for

this module. Alternatively, use this arg to limit the modules whose status will be output to a range by
specifying ‘A. . . B’, where A and B are module names or numbers

1.4. Command-line interface 91

Pimlico Documentation, Release 0.9.23

Options

Option Description
--all,
-a

Show all modules defined in the pipeline, not just those that can be executed

--short,
-s

Use a brief format when showing the full pipeline’s status. Only applies when module names are not
specified. This is useful with very large pipelines, where you just want a compact overview of the
status

--history,
-i

When a module name is given, even more detailed output is given, including the full execution history
of the module

--deps-of,
-d

Restrict to showing only the named/numbered module and any that are (transitive) dependencies of it.
That is, show the whole tree of modules that lead through the pipeline to the given module

--no-color,
--nc

Don’t include terminal color characters, even if the terminal appears to support them. This can be
useful if the automatic detection of color terminals doesn’t work and the status command displays lots
of horrible escape characters

1.4.2 variants

Command-line tool subcommand

List the available variants of a pipeline config

See Pipeline variants for more details.

Usage:

pimlico.sh [...] variants [-h]

1.4.3 run

Command-line tool subcommand

Main command for executing Pimlico modules from the command line run command.

Usage:

pimlico.sh [...] run [modules [modules ...]] [-h] [--force-rerun] [--all-deps] [--
→˓all] [--dry-run] [--step] [--preliminary] [--exit-on-error] [--email {modend,end}]

Positional arguments

Arg Description
[modules
[modules
...]]

The name (or number) of the module to run. To run a stage from a multi-stage module, use ‘mod-
ule:stage’. Use ‘status’ command to see available modules. Use ‘module:?’ or ‘module:help’ to list
available stages. If not given, defaults to next incomplete module that has all its inputs ready. You may
give multiple modules, in which case they will be executed in the order specified

92 Chapter 1. Contents

Pimlico Documentation, Release 0.9.23

Options

Option Description
--force-rerun,
-f

Force running the module(s), even if it’s already been run to completion

--all-deps,
-a

If the given module(s) has dependent modules that have not been completed, executed them first.
This allows you to specify a module late in the pipeline and execute the full pipeline leading to that
point

--all Run all currently unexecuted modules that have their inputs ready, or will have by the time previous
modules are run. (List of modules will be ignored)

--dry-run,
--dry,
--check

Perform all pre-execution checks, but don’t actually run the module(s)

--step Enabled super-verbose debugging mode, which steps through a module’s processing outputting a lot
of information and allowing you to control the output as it goes. Useful for working out what’s going
on inside a module if it’s mysteriously not producing the output you expected

--preliminary,
--pre

Perform a preliminary run of any modules that take multiple datasets into one of their inputs. This
means that we will run the module even if not all the datasets are yet available (but at least one is)
and mark it as preliminarily completed

--exit-on-error,
-e

If an error is encountered while executing a module that causes the whole module execution to fail,
output the error and exit. By default, Pimlico will send error output to a file (or print it in debug
mode) and continue to execute the next module that can be executed, if any

--email Send email notifications when processing is complete, including information about the outcome.
Choose from: ‘modend’ (send notification after module execution if it fails and a summary at the end
of everything), ‘end’ (send only the final summary). Email sending must be configured: see ‘email’
command to test

1.4.4 recover

Command-line tool subcommand

When a document map module gets killed forcibly, sometimes it doesn’t have time to save its execution state, meaning
that it can’t pick up from where it left off.

This command tries to fix the state so that execution can be resumed. It counts the documents in the output corpora
and checks what the last written document was. It then updates the state to mark the module as partially executed, so
that it continues from this document when you next try to run it.

The last written document is always thrown away, since we don’t know whether it was fully written. To avoid partial,
broken output, we assume the last document was not completed and resume execution on that one.

Note that this will only work for modules that output something (which may be an invalid doc) to every output for
every input doc. Modules that only output to some outputs for each input cannot be recovered so easily.

Usage:

pimlico.sh [...] recover module [-h] [--dry] [--last-docs LAST_DOCS]

Positional arguments

Arg Description
module The name (or number) of the module to recover

1.4. Command-line interface 93

Pimlico Documentation, Release 0.9.23

Options

Option Description
--dry Dry run: just say what we’d do
--last-docs Number of last docs to look at in each corpus when synchronizing

1.4.5 fixlength

Command-line tool subcommand

Under some circumstances (e.g. some unpredictable combinations of failures and restarts), an output corpus can end
up with an incorrect length in its metadata. This command counts up the documents in the corpus and corrects the
stored length if it’s wrong.

Usage:

pimlico.sh [...] fixlength module [outputs [outputs ...]] [-h] [--dry]

Positional arguments

Arg Description
module The name (or number) of the module to recover
[outputs [outputs ...]] Names of module outputs to check. By default, checks all

Options

Option Description
--dry Dry run: check the lengths, but don’t write anything

1.4.6 browse

Command-line tool subcommand

View the data output by a module.

Usage:

pimlico.sh [...] browse module_name [output_name] [-h] [--skip-invalid] [--formatter
→˓FORMATTER]

Positional arguments

Arg Description
module_name The name (or number) of the module whose output to look at. Use ‘module:stage’ for multi-

stage modules
[output_name] The name of the output from the module to browse. If blank, load the default output

94 Chapter 1. Contents

Pimlico Documentation, Release 0.9.23

Options

Option Description
--skip-invalidSkip over invalid documents, instead of showing the error that caused them to be invalid
--formatter,
-f

When browsing iterable corpora, fully qualified class name of a subclass of DocumentBrowserFormatter
to use to determine what to output for each document. You may also choose from the named standard
formatters for the datatype in question. Use ‘-f help’ to see a list of available formatters

1.4.7 shell

Command-line tool subcommand

Open a shell to give access to the data output by a module.

Usage:

pimlico.sh [...] shell module_name [output_name] [-h]

Positional arguments

Arg Description
module_name The name (or number) of the module whose output to look at
[output_name] The name of the output from the module to browse. If blank, load the default output

1.4.8 python

Command-line tool subcommand

Load the pipeline config and enter a Python interpreter with access to it in the environment.

Usage:

pimlico.sh [...] python [script] [-h] [-i]

Positional arguments

Arg Description
[script] Script file to execute. Omit to enter interpreter

Options

Option Description
-i Enter interactive shell after running script

1.4. Command-line interface 95

Pimlico Documentation, Release 0.9.23

1.4.9 reset

Command-line tool subcommand

Delete any output from the given module and restore it to unexecuted state.

Usage:

pimlico.sh [...] reset [modules [modules ...]] [-h] [-n]

Positional arguments

Arg Description
[modules [modules ...
]]

The names (or numbers) of the modules to reset, or ‘all’ to reset the whole
pipeline

Options

Option Description
-n,
--no-deps

Only reset the state of this module, even if it has dependent modules in an executed state, which
could be invalidated by resetting and re-running this one

1.4.10 clean

Command-line tool subcommand

Cleans up module output directories that have got left behind.

Often, when developing a pipeline incrementally, you try out some modules, but then remove them, or rename them to
something else. The directory in the Pimlico output store that was created to contain their metadata, status and output
data is then left behind and no longer associated with any module.

Run this command to check all storage locations for such directories. If it finds any, it prompts you to confirm before
deleting them. (If there are things in the list that don’t look like they were left behind by the sort of things mentioned
above, don’t delete them! I don’t want you to lose your precious output data if I’ve made a mistake in this command.)

Note that the operation of this command is specific to the loaded pipeline variant. If you have multiple variants, make
sure to select the one you want to clean with the general –variant option.

Usage:

pimlico.sh [...] clean [-h]

1.4.11 stores

Command-line tool subcommand

List Pimlico stores in use and the corresponding storage locations.

Usage:

pimlico.sh [...] stores [-h]

96 Chapter 1. Contents

Pimlico Documentation, Release 0.9.23

1.4.12 movestores

Command-line tool subcommand

Move a particular module’s output from one storage location to another.

Usage:

pimlico.sh [...] movestores dest [modules [modules ...]] [-h]

Positional arguments

Arg Description
dest Name of destination store
[modules [modules ...]] The names (or numbers) of the module whose output to move

1.4.13 unlock

Command-line tool subcommand

Forcibly remove an execution lock from a module. If a lock has ended up getting left on when execution exited
prematurely, use this to remove it.

When a module starts running, it is locked to avoid making a mess of your output data by running the same module
from another terminal, or some other silly mistake (I know, for some of us this sort of behaviour is frustratingly
common).

Usually shouldn’t be necessary, even if there’s an error during execution, since the module should be unlocked when
Pimlico exits, but occasionally (e.g. if you have to forcibly kill Pimlico during execution) the lock gets left on.

Usage:

pimlico.sh [...] unlock module_name [-h]

Positional arguments

Arg Description
module_name The name (or number) of the module to unlock

1.4.14 dump

Command-line tool subcommand

Dump the entire available output data from a given pipeline module to a tarball, so that it can easily be loaded into the
same pipeline on another system. This is primarily to support spreading the execution of a pipeline between multiple
machines, so that the output from a module can easily be transferred and loaded into a pipeline.

Dump to a tarball using this command, transfer the file between machines and then run the load command to import it
there.

See also:

Running one pipeline on multiple computers: for a more detailed guide to transferring data across servers.

1.4. Command-line interface 97

Pimlico Documentation, Release 0.9.23

Usage:

pimlico.sh [...] dump [modules [modules ...]] [-h] [--output OUTPUT] [--inputs]

Positional arguments

Arg Description
[modules [modules
...]]

Names or numbers of modules whose data to dump. If multiple are given, a separate
file will be dumped for each

Options

Op-
tion

Description

--output,
-o

Path to directory to output to. Defaults to the current user’s home directory

--inputs,
-i

Dump data for the modules corresponding to the inputs of the named modules, instead of those modules
themselves. Useful for when you’re preparing to run a module on a different machine, for getting all the
necessary input data for a module

1.4.15 load

Command-line tool subcommand

Load the output data for a given pipeline module from a tarball previously created by the dump command (typically
on another machine). This is primarily to support spreading the execution of a pipeline between multiple machines, so
that the output from a module can easily be transferred and loaded into a pipeline.

Dump to a tarball using the dump command, transfer the file between machines and then run this command to import
it there.

See also:

Running one pipeline on multiple computers: for a more detailed guide to transferring data across servers.

Usage:

pimlico.sh [...] load [paths [paths ...]] [-h] [--force-overwrite]

Positional arguments

Arg Description
[paths [paths ...]] Paths to dump files (tarballs) to load into the pipeline

Options

Option Description
--force-overwrite,
-f

If data already exists for a module being imported, overwrite without asking. By default, the
user will be prompted to check whether they want to overwrite

98 Chapter 1. Contents

Pimlico Documentation, Release 0.9.23

1.4.16 deps

Command-line tool subcommand

Output information about module dependencies.

Usage:

pimlico.sh [...] deps [modules [modules ...]] [-h]

Positional arguments

Arg Description
[modules
[modules ...
]]

Check dependencies for named modules and install any that are automatically installable.
Use ‘all’ to install dependencies for all modules

1.4.17 install

Command-line tool subcommand

Install missing dependencies.

Usage:

pimlico.sh [...] install [modules [modules ...]] [-h] [--trust-downloaded]

Positional arguments

Arg Description
[modules
[modules ...
]]

Check dependencies for named modules and install any that are automatically installable.
Use ‘all’ to install dependencies for all modules

Options

Option Description
--trust-downloaded,
-t

If an archive file to be downloaded is found to be in the lib dir already, trust that it is the file we’re
after. By default, we only reuse archives we’ve just downloaded, so we know they came from the
right URL, avoiding accidental name clashes

1.4.18 inputs

Command-line tool subcommand

Show the locations of the inputs of a given module. If the input datasets are available, their actual location is shown.
Otherwise, all directories in which the data is being checked for are shown.

Usage:

1.4. Command-line interface 99

Pimlico Documentation, Release 0.9.23

pimlico.sh [...] inputs module_name [-h]

Positional arguments

Arg Description
module_name The name (or number) of the module to display input locations for

1.4.19 output

Command-line tool subcommand

Show the location where the given module’s output data will be (or has been) stored.

Usage:

pimlico.sh [...] output module_name [-h]

Positional arguments

Arg Description
module_name The name (or number) of the module to display input locations for

1.4.20 newmodule

Command-line tool subcommand

Interactive tool to create a new module type, generating a skeleton for the module’s code. Currently only works for
certain module types. May be extended in future to help with creating a broader range of sorts of modules.

Usage:

pimlico.sh [...] newmodule [-h]

1.4.21 visualize

Command-line tool subcommand

(Not yet fully implemented!) Visualize the pipeline, with status information for modules.

Usage:

pimlico.sh [...] visualize [-h] [--all]

Options

Option Description
--all, -a Show all modules defined in the pipeline, not just those that can be executed

100 Chapter 1. Contents

Pimlico Documentation, Release 0.9.23

1.4.22 email

Command-line tool subcommand

Test email settings and try sending an email using them.

Usage:

pimlico.sh [...] email [-h]

1.5 API Documentation

API documentation for the main Pimlico codebase, excluding the built-in Pimlico module types.

1.5.1 pimlico package

Subpackages

pimlico.cli package

Subpackages

pimlico.cli.browser package

Subpackages

pimlico.cli.browser.tools package

Submodules

pimlico.cli.browser.tools.corpus module

pimlico.cli.browser.tools.files module

browse_files(reader)
Browser tool for NamedFileCollections.

is_binary_string(bytes)

is_binary_file(path)
Try reading a bit of a file to work out whether it’s a binary file or text

pimlico.cli.browser.tools.formatter module

Module contents

Submodules

1.5. API Documentation 101

Pimlico Documentation, Release 0.9.23

pimlico.cli.browser.tool module

Tool for browsing datasets, reading from the data output by pipeline modules.

browse_cmd(pipeline, opts)
Command for main Pimlico CLI

Module contents

pimlico.cli.debug package

Submodules

pimlico.cli.debug.stepper module

Module contents

Extra-verbose debugging facility

Tools for very slowly and verbosely stepping through the processing that a given module does to debug it.

Enabled using the –step switch to the run command.

fmt_frame_info(info)

output_stack_trace(frame=None)

pimlico.cli.shell package

Submodules

pimlico.cli.shell.base module

class ShellCommand
Bases: future.types.newobject.newobject

Base class used to provide commands for exploring a particular datatype. A basic set of commands is pro-
vided for all datatypes, but specific datatype classes may provide their own, by overriding the shell_commands
attribute.

commands = []

help_text = None

execute(shell, *args, **kwargs)
Execute the command. Get the dataset reader as shell.data.

Parameters

• shell – DataShell instance. Reader available as shell.data

• args – Args given by the user

• kwargs – Named args given by the user as key=val

102 Chapter 1. Contents

Pimlico Documentation, Release 0.9.23

class DataShell(data, commands, *args, **kwargs)
Bases: cmd.Cmd

Terminal shell for querying datatypes.

prompt = '>>> '

get_names()

do_EOF(line)
Exits the shell

preloop()

postloop()

emptyline()
Don’t repeat the last command (default): ignore empty lines

default(line)
We use this to handle commands that can’t be handled using the do_ pattern. Also handles the default
fallback, which is to execute Python.

cmdloop(intro=None)

exception ShellError
Bases: exceptions.Exception

pimlico.cli.shell.commands module

Basic set of shell commands that are always available.

class MetadataCmd
Bases: pimlico.cli.shell.base.ShellCommand

commands = ['metadata']

help_text = "Display the loaded dataset's metadata"

execute(shell, *args, **kwargs)
Execute the command. Get the dataset reader as shell.data.

Parameters

• shell – DataShell instance. Reader available as shell.data

• args – Args given by the user

• kwargs – Named args given by the user as key=val

class PythonCmd
Bases: pimlico.cli.shell.base.ShellCommand

commands = ['python', 'py']

help_text = "Run a Python interpreter using the current environment, including import availability of all the project code, as well as the dataset in the 'data' variable"

execute(shell, *args, **kwargs)
Execute the command. Get the dataset reader as shell.data.

Parameters

• shell – DataShell instance. Reader available as shell.data

• args – Args given by the user

1.5. API Documentation 103

Pimlico Documentation, Release 0.9.23

• kwargs – Named args given by the user as key=val

pimlico.cli.shell.runner module

class ShellCLICmd
Bases: pimlico.cli.subcommands.PimlicoCLISubcommand

command_name = 'shell'

command_help = 'Open a shell to give access to the data output by a module'

add_arguments(parser)

run_command(pipeline, opts)

launch_shell(data)
Starts a shell to view and query the given datatype instance.

Module contents

Submodules

pimlico.cli.check module

pimlico.cli.clean module

class CleanCmd
Bases: pimlico.cli.subcommands.PimlicoCLISubcommand

Cleans up module output directories that have got left behind.

Often, when developing a pipeline incrementally, you try out some modules, but then remove them, or rename
them to something else. The directory in the Pimlico output store that was created to contain their metadata,
status and output data is then left behind and no longer associated with any module.

Run this command to check all storage locations for such directories. If it finds any, it prompts you to confirm
before deleting them. (If there are things in the list that don’t look like they were left behind by the sort of things
mentioned above, don’t delete them! I don’t want you to lose your precious output data if I’ve made a mistake
in this command.)

Note that the operation of this command is specific to the loaded pipeline variant. If you have multiple variants,
make sure to select the one you want to clean with the general –variant option.

command_name = 'clean'

command_help = 'Remove all module directories that do not correspond to a module in the pipeline in all storage locations. This is useful when modules have been renamed or removed and output directories have got left behind. Note that it is specific to the selected variant'

command_desc = 'Remove all module output directories that do not correspond to a module in the pipeline'

run_command(pipeline, opts)

pimlico.cli.fixlength module

104 Chapter 1. Contents

Pimlico Documentation, Release 0.9.23

pimlico.cli.loaddump module

class DumpCmd
Bases: pimlico.cli.subcommands.PimlicoCLISubcommand

Dump the entire available output data from a given pipeline module to a tarball, so that it can easily be loaded into
the same pipeline on another system. This is primarily to support spreading the execution of a pipeline between
multiple machines, so that the output from a module can easily be transferred and loaded into a pipeline.

Dump to a tarball using this command, transfer the file between machines and then run the load command to
import it there.

See also:

Running one pipeline on multiple computers: for a more detailed guide to transferring data across servers

command_name = 'dump'

command_help = 'Dump the entire available output data from a given pipeline module to a tarball, so that it can easily be loaded into the same pipeline on another system. This is primarily to support spreading the execution of a pipeline between multiple machines, so that the output from a module can easily be transferred and loaded into a pipeline'

command_desc = 'Dump the entire available output data from a given pipeline module to a tarball'

add_arguments(parser)

run_command(pipeline, opts)

class LoadCmd
Bases: pimlico.cli.subcommands.PimlicoCLISubcommand

Load the output data for a given pipeline module from a tarball previously created by the dump command
(typically on another machine). This is primarily to support spreading the execution of a pipeline between
multiple machines, so that the output from a module can easily be transferred and loaded into a pipeline.

Dump to a tarball using the dump command, transfer the file between machines and then run this command to
import it there.

See also:

Running one pipeline on multiple computers: for a more detailed guide to transferring data across servers

command_name = 'load'

command_help = "Load a module's output data from a tarball previously created by the dump command, usually on a different system. This will overwrite any output data the module already has completely, including metadata, run history, etc. You may load multiple modules' data at once"

command_desc = "Load a module's output data from a tarball previously created by the dump command"

add_arguments(parser)

run_command(pipeline, opts)

pimlico.cli.locations module

class InputsCmd
Bases: pimlico.cli.subcommands.PimlicoCLISubcommand

command_name = 'inputs'

command_help = 'Show the locations of the inputs of a given module. If the input datasets are available, their actual location is shown. Otherwise, all directories in which the data is being checked for are shown'

command_desc = 'Show the (expected) locations of the inputs of a given module'

add_arguments(parser)

run_command(pipeline, opts)

1.5. API Documentation 105

Pimlico Documentation, Release 0.9.23

class OutputCmd
Bases: pimlico.cli.subcommands.PimlicoCLISubcommand

command_name = 'output'

command_help = "Show the location where the given module's output data will be (or has been) stored"

add_arguments(parser)

run_command(pipeline, opts)

class ListStoresCmd
Bases: pimlico.cli.subcommands.PimlicoCLISubcommand

command_name = 'stores'

command_help = 'List Pimlico stores in use and the corresponding storage locations'

command_desc = 'List named Pimlico stores'

run_command(pipeline, opts)

class MoveStoresCmd
Bases: pimlico.cli.subcommands.PimlicoCLISubcommand

command_name = 'movestores'

command_help = "Move a particular module's output from one storage location to another"

command_desc = 'Move data between stores'

add_arguments(parser)

run_command(pipeline, opts)

pimlico.cli.main module

pimlico.cli.newmodule module

class NewModuleCmd
Bases: pimlico.cli.subcommands.PimlicoCLISubcommand

command_name = 'newmodule'

command_help = "Interactive tool to create a new module type, generating a skeleton for the module's code. Currently only works for certain module types. May be extended in future to help with creating a broader range of sorts of modules"

command_desc = 'Create a new module type'

run_command(pipeline, opts)

ask(prompt, strip_space=True)

pimlico.cli.pyshell module

class PimlicoPythonShellContext
Bases: future.types.newobject.newobject

A class used as a static global data structure to provide access to the loaded pipeline when running the Pimlico
Python shell command.

This should never be used in any other context to pass around loaded pipelines or other global data. We don’t
do that sort of thing.

106 Chapter 1. Contents

Pimlico Documentation, Release 0.9.23

class PythonShellCmd
Bases: pimlico.cli.subcommands.PimlicoCLISubcommand

command_name = 'python'

command_help = 'Load the pipeline config and enter a Python interpreter with access to it in the environment'

add_arguments(parser)

run_command(pipeline, opts)

get_pipeline()
This function may be used in scripts that are expected to be run exclusively from the Pimlico Python shell
command (python) to get hold of the pipeline that was specified on the command line and loaded when the
shell was started.

exception ShellContextError
Bases: exceptions.Exception

pimlico.cli.recover module

pimlico.cli.reset module

class ResetCmd
Bases: pimlico.cli.subcommands.PimlicoCLISubcommand

command_name = 'reset'

command_help = 'Delete any output from the given module and restore it to unexecuted state'

add_arguments(parser)

run_command(pipeline, opts)

pimlico.cli.run module

pimlico.cli.status module

class StatusCmd
Bases: pimlico.cli.subcommands.PimlicoCLISubcommand

command_name = 'status'

command_help = 'Output a module execution schedule for the pipeline and execution status for every module'

add_arguments(parser)

run_command(pipeline, opts)

module_status_color(module)

status_colored(module, text=None)
Colour the text according to the status of the given module. If text is not given, the module’s name is returned.

module_status(module)
Detailed module status, shown when a specific module’s status is requested.

1.5. API Documentation 107

Pimlico Documentation, Release 0.9.23

pimlico.cli.subcommands module

class PimlicoCLISubcommand
Bases: future.types.newobject.newobject

Base class for defining subcommands to the main command line tool.

This allows us to split up subcommands, together with all their arguments/options and their functionality, since
there are quite a lot of them.

Documentation of subcommands should be supplied in the following ways:

• Include help texts for positional args and options in the add_arguments() method. They will all be included
in the doc page for the command.

• Write a very short description of what the command is for (a few words) in command_desc. This will be
used in the summary table / TOC in the docs.

• Write a short description of what the command does in command_help. This will be available in
command-line help and used as a fallback if you don’t do the next point.

• Write a good guide to using the command (or at least say what it does) in the class’ docstring (i.e. overrid-
ing this). This will form the bulk of the command’s doc page.

command_name = None

command_help = None

command_desc = None

add_arguments(parser)

run_command(pipeline, opts)

pimlico.cli.testemail module

class EmailCmd
Bases: pimlico.cli.subcommands.PimlicoCLISubcommand

command_name = 'email'

command_help = 'Test email settings and try sending an email using them'

run_command(pipeline, opts)

pimlico.cli.util module

module_number_to_name(pipeline, name)

module_numbers_to_names(pipeline, names)
Convert module numbers to names, also handling ranges of numbers (and names) specified with “. . . ”. Any
“. . . ” will be filled in by the sequence of intervening modules.

Also, if an unexpanded module name is specified for a module that’s been expanded into multiple corresponding
to alternative parameters, all of the expanded module names are inserted in place of the unexpanded name.

format_execution_error(error)
Produce a string with lots of error output to help debug a module execution error.

Parameters error – the exception raised (ModuleExecutionError or ModuleInfoLoadError)

Returns formatted output

108 Chapter 1. Contents

Pimlico Documentation, Release 0.9.23

print_execution_error(error)

Module contents

pimlico.core package

Subpackages

pimlico.core.dependencies package

Submodules

pimlico.core.dependencies.base module

Base classes for defining software dependencies for module types and routines for fetching them.

class SoftwareDependency(name, url=None, dependencies=None)
Bases: future.types.newobject.newobject

Base class for all Pimlico module software dependencies.

available(local_config)
Return True if the dependency is satisfied, meaning that the software/library is installed and ready to use.

problems(local_config)
Returns a list of problems standing in the way of the dependency being available. If the list is empty, the
dependency is taken to be installed and ready to use.

Overriding methods should call super method.

installable()
Return True if it’s possible to install this library automatically. If False, the user will have to install it
themselves. Instructions for doing this may be provided by installation_instructions(), which will only
generally be called if installable() returns False.

This might be the case, for example, if the software is not available to download freely, or if it requires a
system-wide installation.

installation_instructions()
Where a dependency can’t be installed programmatically, we typically want to be able to output instruc-
tions for the user to tell them how to go about doing it themselves. Any subclass that doesn’t provide an
automatic installation routine should override this to provide instructions.

You may also provide this even if the class does provide automatic installation. For example, you might
want to provide instructions for other ways to install the software, like a system-wide install. This instruc-
tions will be shown together with missing dependency information.

installation_notes()
If this returns a non-empty string, the message will be output together with the information that the depen-
dency is not available, before the user is given the option of installing it automatically (or told that it can’t
be). This is useful where information about a dependency should always be displayed, not just in cases
where automatic installation isn’t possible.

For example, you might need to include warnings about potential installation difficulties, license informa-
tion, sources of additional information about the software, and so on.

1.5. API Documentation 109

Pimlico Documentation, Release 0.9.23

dependencies()
Returns a list of instances of SoftwareDependency subclasses representing this library’s own depen-
dencies. If the library is already available, these will never be consulted, but if it is to be installed, we will
check first that all of these are available (and try to install them if not).

install(local_config, trust_downloaded_archives=False)
Should be overridden by any subclasses whose library is automatically installable. Carries out the actual
installation.

You may assume that all dependencies returned by :method:dependencies have been satisfied prior to
calling this.

all_dependencies()
Recursively fetch all dependencies of this dependency (not including itself).

get_installed_version(local_config)
If available() returns True, this method should return a SoftwareVersion object (or subclass) representing
the software’s version.

The base implementation returns an object representing an unknown version number.

If available() returns False, the behaviour is undefined and may raise an error.

class Any(name, dependency_options, *args, **kwargs)
Bases: pimlico.core.dependencies.base.SoftwareDependency

A collection of dependency requirements of which at least one must be available. The first in the list that is
installable is treated as the default and used for automatic installation.

available(local_config)
Return True if the dependency is satisfied, meaning that the software/library is installed and ready to use.

problems(local_config)
Returns a list of problems standing in the way of the dependency being available. If the list is empty, the
dependency is taken to be installed and ready to use.

Overriding methods should call super method.

installable()
Return True if it’s possible to install this library automatically. If False, the user will have to install it
themselves. Instructions for doing this may be provided by installation_instructions(), which will only
generally be called if installable() returns False.

This might be the case, for example, if the software is not available to download freely, or if it requires a
system-wide installation.

get_installation_candidate()
Returns the first dependency of the multiple possibilities that is automatically installable, or None if none
of them are.

get_available_option(local_config)
If one of the options is available, return that one. Otherwise return None.

dependencies()
Returns a list of instances of SoftwareDependency subclasses representing this library’s own depen-
dencies. If the library is already available, these will never be consulted, but if it is to be installed, we will
check first that all of these are available (and try to install them if not).

install(local_config, trust_downloaded_archives=False)
Installs the dependency given by get_installation_candidate(), if any. Ideally, we should
provide a way to select which of the options should be installed. However, until we’ve worked out the best

110 Chapter 1. Contents

Pimlico Documentation, Release 0.9.23

way to do this, the default option is always installed. The user may install another option manually and
that will be used.

installation_notes()
If this returns a non-empty string, the message will be output together with the information that the depen-
dency is not available, before the user is given the option of installing it automatically (or told that it can’t
be). This is useful where information about a dependency should always be displayed, not just in cases
where automatic installation isn’t possible.

For example, you might need to include warnings about potential installation difficulties, license informa-
tion, sources of additional information about the software, and so on.

class SystemCommandDependency(name, test_command, **kwargs)
Bases: pimlico.core.dependencies.base.SoftwareDependency

Dependency that tests whether a command is available on the command line. Generally requires system-wide
installation.

installable()
Usually not automatically installable

problems(local_config)
Returns a list of problems standing in the way of the dependency being available. If the list is empty, the
dependency is taken to be installed and ready to use.

Overriding methods should call super method.

exception InstallationError
Bases: exceptions.Exception

check_and_install(deps, local_config, trust_downloaded_archives=False)
Check whether dependencies are available and try to install those that aren’t. Returns a list of dependencies that
can’t be installed.

install(dep, local_config, trust_downloaded_archives=False)

install_dependencies(pipeline, modules=None, trust_downloaded_archives=True)
Install depedencies for pipeline modules

Parameters

• pipeline –

• modules – list of module names, or None to install for all

Returns

recursive_deps(dep)
Collect all recursive dependencies of this dependency. Does a depth-first search so that everything comes later
in the list than things it depends on.

pimlico.core.dependencies.core module

Basic Pimlico core dependencies

CORE_PIMLICO_DEPENDENCIES = [PythonPackageSystemwideInstall<Pip>, PythonPackageOnPip<Pip (pip)>, PythonPackageOnPip<virtualenv>, PythonPackageOnPip<colorama>, PythonPackageOnPip<termcolor>, PythonPackageOnPip<tabulate>, PythonPackageOnPip<Progressbar (progressbar)>, PythonPackageOnPip<backports.csv>, PythonPackageOnPip<configparser>]
Core dependencies required by the basic Pimlico installation, regardless of what pipeline is being processed.
These will be checked when Pimlico is run, using the same dependency-checking mechanism that Pimlico
modules use, and installed automatically if they’re not found.

1.5. API Documentation 111

Pimlico Documentation, Release 0.9.23

pimlico.core.dependencies.java module

pimlico.core.dependencies.python module

Tools for Python library dependencies.

Provides superclasses for Python library dependencies and a selection of commonly used dependency instances.

class PythonPackageDependency(package, name, **kwargs)
Bases: pimlico.core.dependencies.base.SoftwareDependency

Base class for Python dependencies. Provides import checks, but no installation routines. Subclasses should
either provide install() or installation_instructions().

The import checks do not (as of 0.6rc) actually import the package, as this may have side-effects that are difficult
to account for, causing odd things to happen when you check multiple times, or try to import later. Instead, it
just checks whether the package finder is about to locate the package. This doesn’t guarantee that the import
will succeed.

problems(local_config)
Returns a list of problems standing in the way of the dependency being available. If the list is empty, the
dependency is taken to be installed and ready to use.

Overriding methods should call super method.

import_package()
Try importing package_name. By default, just uses __import__. Allows subclasses to allow for special
import behaviour.

Should raise an ImportError if import fails.

get_installed_version(local_config)
Tries to import a __version__ variable from the package, which is a standard way to define the package
version.

class PythonPackageSystemwideInstall(package_name, name, pip_package=None,
apt_package=None, yum_package=None, **kwargs)

Bases: pimlico.core.dependencies.python.PythonPackageDependency

Dependency on a Python package that needs to be installed system-wide.

installable()
Return True if it’s possible to install this library automatically. If False, the user will have to install it
themselves. Instructions for doing this may be provided by installation_instructions(), which will only
generally be called if installable() returns False.

This might be the case, for example, if the software is not available to download freely, or if it requires a
system-wide installation.

installation_instructions()
Where a dependency can’t be installed programmatically, we typically want to be able to output instruc-
tions for the user to tell them how to go about doing it themselves. Any subclass that doesn’t provide an
automatic installation routine should override this to provide instructions.

You may also provide this even if the class does provide automatic installation. For example, you might
want to provide instructions for other ways to install the software, like a system-wide install. This instruc-
tions will be shown together with missing dependency information.

class PythonPackageOnPip(package, name=None, pip_package=None, up-
grade_only_if_needed=False, min_version=None, **kwargs)

Bases: pimlico.core.dependencies.python.PythonPackageDependency

112 Chapter 1. Contents

Pimlico Documentation, Release 0.9.23

Python package that can be installed via pip. Will be installed in the virtualenv if not available.

Allows specification of a minimum version. If an earlier version is installed, it will be upgraded.

installable()
Return True if it’s possible to install this library automatically. If False, the user will have to install it
themselves. Instructions for doing this may be provided by installation_instructions(), which will only
generally be called if installable() returns False.

This might be the case, for example, if the software is not available to download freely, or if it requires a
system-wide installation.

install(local_config, trust_downloaded_archives=False)
Should be overridden by any subclasses whose library is automatically installable. Carries out the actual
installation.

You may assume that all dependencies returned by :method:dependencies have been satisfied prior to
calling this.

problems(local_config)
Returns a list of problems standing in the way of the dependency being available. If the list is empty, the
dependency is taken to be installed and ready to use.

Overriding methods should call super method.

get_installed_version(local_config)
Tries to import a __version__ variable from the package, which is a standard way to define the package
version.

safe_import_bs4()
BS can go very slowly if it tries to use chardet to detect input encoding Remove chardet and cchardet from the
Python modules, so that import fails and it doesn’t try to use them This prevents it getting stuck on reading long
input files

class BeautifulSoupDependency
Bases: pimlico.core.dependencies.python.PythonPackageOnPip

Test import with special BS import behaviour.

import_package()
Try importing package_name. By default, just uses __import__. Allows subclasses to allow for special
import behaviour.

Should raise an ImportError if import fails.

class NLTKResource(name, url=None, dependencies=None)
Bases: pimlico.core.dependencies.base.SoftwareDependency

Check for and install NLTK resources, using NLTK’s own downloader.

problems(local_config)
Returns a list of problems standing in the way of the dependency being available. If the list is empty, the
dependency is taken to be installed and ready to use.

Overriding methods should call super method.

installable()
Return True if it’s possible to install this library automatically. If False, the user will have to install it
themselves. Instructions for doing this may be provided by installation_instructions(), which will only
generally be called if installable() returns False.

This might be the case, for example, if the software is not available to download freely, or if it requires a
system-wide installation.

1.5. API Documentation 113

Pimlico Documentation, Release 0.9.23

install(local_config, trust_downloaded_archives=False)
Should be overridden by any subclasses whose library is automatically installable. Carries out the actual
installation.

You may assume that all dependencies returned by :method:dependencies have been satisfied prior to
calling this.

dependencies()
Returns a list of instances of SoftwareDependency subclasses representing this library’s own depen-
dencies. If the library is already available, these will never be consulted, but if it is to be installed, we will
check first that all of these are available (and try to install them if not).

pimlico.core.dependencies.versions module

class SoftwareVersion(string_id)
Bases: future.types.newobject.newobject

Base class for representing version numbers / IDs of software. Different software may use different conventions
to represent its versions, so it may be necessary to subclass this class to provide the appropriate parsing and
comparison of versions.

compare_dotted_versions(version0, version1)
Comparison function for reasonably standard version numbers, with subversions to any level of nesting specified
by dots.

Module contents

pimlico.core.external package

Submodules

pimlico.core.external.java module

call_java(class_name, args=[], classpath=None)

java_call_command(class_name, classpath=None)
List of components for a subprocess call to Java, used by call_java

start_java_process(class_name, args=[], java_args=[], wait=0.1, classpath=None)

class Py4JInterface(gateway_class, port=None, python_port=None, gateway_args=[],
pipeline=None, print_stdout=True, print_stderr=True, env={}, sys-
tem_properties={}, java_opts=[], timeout=10.0, prefix_classpath=None)

Bases: future.types.newobject.newobject

start(timeout=None, port_output_prefix=None)
Start a Py4J gateway server in the background on the given port, which will then be used for communicat-
ing with the Java app.

If a port has been given, it is assumed that the gateway accepts a –port option. Likewise with python_port
and a –python-port option.

If timeout is given, it overrides any timeout given in the constructor or specified in local config.

new_client()

stop()

114 Chapter 1. Contents

Pimlico Documentation, Release 0.9.23

clear_output_queues()

no_retry_gateway(**kwargs)
A wrapper around the constructor of JavaGateway that produces a version of it that doesn’t retry on errors. The
default gateway keeps retying and outputting millions of errors if the server goes down, which makes responding
to interrupts horrible (as the server might die before the Python process gets the interrupt).

TODO This isn’t working: it just gets worse when I use my version!

gateway_client_to_running_server(port)

launch_gateway(gateway_class=’py4j.GatewayServer’, args=[], javaopts=[], redirect_stdout=None,
redirect_stderr=None, daemonize_redirect=True, env={}, port_output_prefix=None,
startup_timeout=10.0, prefix_classpath=None)

Our own more flexble version of Py4J’s launch_gateway.

get_redirect_func(redirect)

class OutputConsumer(redirects, stream, *args, **kwargs)
Bases: threading.Thread

Thread that consumes output Modification of Py4J’s OutputConsumer to allow multiple redirects.

remove_temporary_redirects()

run()
Method representing the thread’s activity.

You may override this method in a subclass. The standard run() method invokes the callable object passed
to the object’s constructor as the target argument, if any, with sequential and keyword arguments taken
from the args and kwargs arguments, respectively.

output_p4j_error_info(command, returncode, stdout, stderr)

make_py4j_errors_safe(fn)
Decorator for functions/methods that call Py4J. Py4J’s exceptions include information that gets retrieved from
the Py4J server when they’re displayed. This is a problem if the server is not longer running and raises another
exception, making the whole situation very confusing.

If you wrap your function with this, Py4JJavaErrors will be replaced by our own exception type
Py4JSafeJavaError, containing some of the information about the Java exception if possible.

exception Py4JSafeJavaError(java_exception=None, str=None)
Bases: exceptions.Exception

exception DependencyCheckerError
Bases: exceptions.Exception

exception JavaProcessError
Bases: exceptions.Exception

Module contents

Tools for calling external (non-Python) tools.

pimlico.core.modules package

Subpackages

1.5. API Documentation 115

Pimlico Documentation, Release 0.9.23

pimlico.core.modules.map package

Submodules

pimlico.core.modules.map.filter module

pimlico.core.modules.map.multiproc module

pimlico.core.modules.map.singleproc module

pimlico.core.modules.map.threaded module

Module contents

Submodules

pimlico.core.modules.base module

pimlico.core.modules.execute module

pimlico.core.modules.inputs module

pimlico.core.modules.multistage module

pimlico.core.modules.options module

Utilities and type processors for module options.

opt_type_help(help_text)
Decorator to add help text to functions that are designed to be used as module option processors. The help text
will be used to describe the type in documentation.

opt_type_example(example_text)
Decorate to add an example value to function that are designed to be used as module option processors. The
given text will be used in module docs as an example of how to specify the option in a config file.

format_option_type(t)

str_to_bool(string)
Convert a string value to a boolean in a sensible way. Suitable for specifying booleans as options.

Parameters string – input string

Returns boolean value

choose_from_list(options, name=None)
Utility for option processors to limit the valid values to a list of possibilities.

comma_separated_list(item_type=<class ’future.types.newstr.newstr’>, length=None)
Option processor type that accepts comma-separated lists of strings. Each value is then parsed according to the
given item_type (default: string).

comma_separated_strings(string)

json_string(string)

116 Chapter 1. Contents

Pimlico Documentation, Release 0.9.23

json_dict(string)
JSON dicts, with or without {}s

process_module_options(opt_def, opt_dict, module_type_name)
Utility for processing runtime module options. Called from module base class.

Also used when loading a dataset’s datatype from datatype options specified in a config file.

Parameters

• opt_def – dictionary defining available options

• opt_dict – dictionary of option values

• module_type_name – name for error output

Returns dictionary of processed options

exception ModuleOptionParseError
Bases: exceptions.Exception

Module contents

Core functionality for loading and executing different types of pipeline module.

Submodules

pimlico.core.config module

pimlico.core.logs module

get_log_file(name)
Returns the path to a log file that may be used to output helpful logging info. Typically used to output verbose
error information if something goes wrong. The file can be found in the Pimlico log dir.

Parameters name – identifier to distinguish from other logs

Returns path

pimlico.core.paths module

abs_path_or_model_dir_path(path, model_type)

Module contents

pimlico.datatypes package

Subpackages

pimlico.datatypes.corpora package

Submodules

1.5. API Documentation 117

Pimlico Documentation, Release 0.9.23

pimlico.datatypes.corpora.base module

pimlico.datatypes.corpora.data_points module

pimlico.datatypes.corpora.floats module

pimlico.datatypes.corpora.grouped module

pimlico.datatypes.corpora.ints module

pimlico.datatypes.corpora.json module

pimlico.datatypes.corpora.table module

pimlico.datatypes.corpora.tokenized module

Module contents

Submodules

pimlico.datatypes.arrays module

pimlico.datatypes.base module

pimlico.datatypes.core module

pimlico.datatypes.dictionary module

pimlico.datatypes.embeddings module

pimlico.datatypes.features module

pimlico.datatypes.files module

pimlico.datatypes.gensim module

pimlico.datatypes.keras module

pimlico.datatypes.plotting module

pimlico.datatypes.sklearn module

Module contents

pimlico.test package

118 Chapter 1. Contents

Pimlico Documentation, Release 0.9.23

Submodules

pimlico.test.pipeline module

pimlico.test.suite module

Module contents

pimlico.utils package

Subpackages

pimlico.utils.docs package

Submodules

pimlico.utils.docs.commandgen module

pimlico.utils.docs.modulegen module

pimlico.utils.docs.rest module

make_table(grid, header=None)

table_div(col_widths, header_flag=False)

normalize_cell(string, length)

pimlico.utils.docs.testgen module

Module contents

trim_docstring(docstring)

Submodules

pimlico.utils.communicate module

timeout_process(*args, **kwds)
Context manager for use in a with statement. If the with block hasn’t completed after the given number of
seconds, the process is killed.

Parameters proc – process to kill if timeout is reached before end of block

Returns

terminate_process(proc, kill_time=None)
Ends a process started with subprocess. Tries killing, then falls back on terminating if it doesn’t work.

Parameters

1.5. API Documentation 119

Pimlico Documentation, Release 0.9.23

• kill_time – time to allow the process to be killed before falling back on terminating

• proc – Popen instance

Returns

class StreamCommunicationPacket(data)
Bases: future.types.newobject.newobject

length

encode()

static read(stream)

exception StreamCommunicationError
Bases: exceptions.Exception

pimlico.utils.core module

multiwith(*args, **kwds)
Taken from contextlib’s nested(). We need the variable number of context managers that this function allows.

is_identifier(ident)
Determines if string is valid Python identifier.

remove_duplicates(lst, key=<function <lambda>>)
Remove duplicate values from a list, keeping just the first one, using a particular key function to compare them.

infinite_cycle(iterable)
Iterate infinitely over the given iterable.

Watch out for calling this on a generator or iter: they can only be iterated over once, so you’ll get stuck in an
infinite loop with no more items yielded once you’ve gone over it once.

You may also specify a callable, in which case it will be called each time to get a new iterable/iterator. This is
useful in the case of generator functions.

Parameters iterable – iterable or generator to loop over indefinitely

import_member(path)
Import a class, function, or other module member by its fully-qualified Python name.

Parameters path – path to member, including full package path and class/function/etc name

Returns cls

split_seq(seq, separator, ignore_empty_final=False)
Iterate over a sequence and group its values into lists, separated in the original sequence by the given value. If
on is callable, it is called on each element to test whether it is a separator. Otherwise, elements that are equal to
on a treated as separators.

Parameters

• seq – sequence to divide up

• separator – separator or separator test function

• ignore_empty_final – by default, if there’s a separator at the end, the last sequence
yielded is empty. If ignore_empty_final=True, in this case the last empty sequence is
dropped

Returns iterator over subsequences

120 Chapter 1. Contents

Pimlico Documentation, Release 0.9.23

split_seq_after(seq, separator)
Somewhat like split_seq, but starts a new subsequence after each separator, without removing the separators.
Each subsequence therefore ends with a separator, except the last one if there’s no separator at the end.

Parameters

• seq – sequence to divide up

• separator – separator or separator test function

Returns iterator over subsequences

chunk_list(lst, length)
Divides a list into chunks of max length length.

class cached_property(func)
Bases: future.types.newobject.newobject

A property that is only computed once per instance and then replaces itself with an ordinary attribute. Deleting
the attribute resets the property.

Often useful in Pimlico datatypes, where it can be time-consuming to load data, but we can’t do it once when
the datatype is first loaded, since the data might not be ready at that point. Instead, we can access the data, or
particular parts of it, using properties and easily cache the result.

Taken from: https://github.com/bottlepy/bottle

pimlico.utils.email module

Email sending utilities

Configure email sending functionality by adding the following fields to your Pimlico local config file:

email_sender From-address for all sent emails

email_recipients To-addresses, separated by commas. All notification emails will be sent to all recipients

email_host (optional) Hostname of your SMTP server. Defaults to localhost

email_username (optional) Username to authenticate with your SMTP server. If not given, it is assumed that no
authentication is required

email_password (optional) Password to authenticate with your SMTP server. Must be supplied if username is given

class EmailConfig(sender=None, recipients=None, host=None, username=None, password=None)
Bases: future.types.newobject.newobject

classmethod from_local_config(local_config)

send_pimlico_email(subject, content, local_config, log)
Primary method for sending emails from Pimlico. Tries to send an email with the given content, using the email
details found in the local config. If something goes wrong, an error is logged on the given log.

Parameters

• subject – email subject

• content – email text (may be unicode)

• local_config – local config dictionary

• log – logger to log errors to (and info if the sending works)

send_text_email(email_config, subject, content=None)

1.5. API Documentation 121

https://github.com/bottlepy/bottle

Pimlico Documentation, Release 0.9.23

exception EmailError
Bases: exceptions.Exception

pimlico.utils.filesystem module

dirsize(path)
Recursively compute the size of the contents of a directory.

Parameters path –

Returns size in bytes

format_file_size(bytes)

copy_dir_with_progress(source_dir, target_dir, move=False)
Utility for moving/copying a large directory and displaying a progress bar showing how much is copied.

Note that the directory is first copied, then the old directory is removed, if move=True.

Parameters

• source_dir –

• target_dir –

Returns

move_dir_with_progress(source_dir, target_dir)

new_filename(directory, initial_filename=’tmp_file’)
Generate a filename that doesn’t already exist.

retry_open(filename, errnos=[13], retry_schedule=[2, 10, 30, 120, 300], **kwargs)
Try opening a file, using the builtin open() function (Py3, or io.open on Py2). If an IOError is raised and its
errno is in the given list, wait a moment then retry. Keeps doing this, waiting a bit longer each time, hoping that
the problem will go away.

Once too many attempts have been made, outputs a message and waits for user input. This means the user can
fix the problem (e.g. renew credentials) and pick up where execution left off. If they choose not to, the original
error will be raised

Default list of errnos is just [13] – permission denied.

Use retry_schedule to customize the lengths of time waited between retries. Default: 2s, 10s, 30s, 2m, 5m, then
give up.

Additional kwargs are pass on to open().

extract_from_archive(archive_filename, members, target_dir, preserve_dirs=True)
Extract a file or files from an archive, which may be a tarball or a zip file (determined by the file extension).

extract_archive(archive_filename, target_dir, preserve_dirs=True)
Extract all files from an archive, which may be a tarball or a zip file (determined by the file extension).

pimlico.utils.format module

multiline_tablate(table, widths, **kwargs)

title_box(title_text)
Make a nice big pretty title surrounded by a box.

122 Chapter 1. Contents

Pimlico Documentation, Release 0.9.23

pimlico.utils.linguistic module

strip_punctuation(s, split_words=True)

pimlico.utils.logging module

get_console_logger(name, debug=False)
Convenience function to make it easier to create new loggers.

Parameters

• name – logging system logger name

• debug – whether to use DEBUG level. By default, uses INFO

Returns

pimlico.utils.network module

get_unused_local_port()
Find a local port that’s not currently being used, which we’ll be able to bind a service to once this function
returns.

get_unused_local_ports(n)
Find a number of local ports not currently in use. Binds each port found before looking for the next one. If you
just called get_unused_local_port() multiple times, you’d get to same answer coming back.

pimlico.utils.pipes module

qget(queue, *args, **kwargs)
Wrapper that calls the get() method of a queue, catching EINTR interrupts and retrying. Recent versions of
Python have this built in, but with earlier versions you can end up having processes die while waiting on queue
output because an EINTR has received (which isn’t necessarily a problem).

Parameters

• queue –

• args – args to pass to queue’s get()

• kwargs – kwargs to pass to queue’s get()

Returns

class OutputQueue(out)
Bases: future.types.newobject.newobject

Direct a readable output (e.g. pipe from a subprocess) to a queue. Returns the queue. Output is added to the
queue one line at a time. To perform a non-blocking read call get_nowait() or get(timeout=T)

get_nowait()

get(timeout=None)

get_available()
Don’t block. Just return everything that’s available in the queue.

1.5. API Documentation 123

Pimlico Documentation, Release 0.9.23

pimlico.utils.pos module

pos_tag_to_ptb(tag)
see :doc:pos_pos_tags_to_ptb

pos_tags_to_ptb(tags)
Takes a list of POS tags and checks they’re all in the PTB tagset. If they’re not, tries mapping them according
to CCGBank’s special version of the tagset. If that doesn’t work, raises a NonPTBTagError.

exception NonPTBTagError
Bases: exceptions.Exception

pimlico.utils.probability module

limited_shuffle(iterable, buffer_size, rand_generator=None)
Some algorithms require the order of data to be randomized. An obvious solution is to put it all in a list and
shuffle, but if you don’t want to load it all into memory that’s not an option. This method iterates over the data,
keeping a buffer and choosing at random from the buffer what to put next. It’s less shuffled than the simpler
solution, but limits the amount of memory used at any one time to the buffer size.

limited_shuffle_numpy(iterable, buffer_size, randint_buffer_size=1000)
Identical behaviour to limited_shuffle(), but uses Numpy’s random sampling routines to generate a large
number of random integers at once. This can make execution a bit bursty, but overall tends to speed things up,
as we get the random sampling over in one big call to Numpy.

batched_randint(low, high=None, batch_size=1000)
Infinite iterable that produces random numbers in the given range by calling Numpy now and then to generate
lots of random numbers at once and then yielding them one by one. Faster than sampling one at a time.

Parameters

• a – lowest number in range

• b – highest number in range

• batch_size – number of ints to generate in one go

sequential_document_sample(corpus, start=None, shuffle=None, sample_rate=None)
Wrapper around a pimlico.datatypes.tar.TarredCorpus to draw infinite samples of documents
from the corpus, by iterating over the corpus (looping infinitely), yielding documents at random. If sample_rate
is given, it should be a float between 0 and 1, specifying the rough proportion of documents to sample. A lower
value spreads out the documents more on average.

Optionally, the samples are shuffled within a limited scope. Set shuffle to the size of this scope (higher will
shuffle more, but need to buffer more samples in memory). Otherwise (shuffle=0), they will appear in the order
they were in the original corpus.

If start is given, that number of documents will be skipped before drawing any samples. Set start=0 to start at
the beginning of the corpus. By default (start=None) a random point in the corpus will be skipped to before
beginning.

sequential_sample(iterable, start=0, shuffle=None, sample_rate=None)
Draw infinite samples from an iterable, by iterating over it (looping infinitely), yielding items at random. If
sample_rate is given, it should be a float between 0 and 1, specifying the rough proportion of documents to
sample. A lower value spreads out the documents more on average.

Optionally, the samples are shuffled within a limited scope. Set shuffle to the size of this scope (higher will
shuffle more, but need to buffer more samples in memory). Otherwise (shuffle=0), they will appear in the order
they were in the original corpus.

124 Chapter 1. Contents

Pimlico Documentation, Release 0.9.23

If start is given, that number of documents will be skipped before drawing any samples. Set start=0 to start at
the beginning of the corpus. Note that setting this to a high number can result in a slow start-up, if iterating over
the items is slow.

Note: If you’re sampling documents from a TarredCorpus, it’s better to use
sequential_document_sample(), since it makes use of TarredCorpus’s built-in features to do
the skipping and sampling more efficiently.

subsample(iterable, sample_rate)
Subsample the given iterable at a given rate, between 0 and 1.

pimlico.utils.progress module

get_progress_bar(maxval, counter=False, title=None, start=True)
Simple utility to build a standard progress bar, so I don’t have to think about this each time I need one. Starts
the progress bar immediately.

start is no longer used, included only for backwards compatibility.

get_open_progress_bar(title=None)
Builds a standard progress bar for the case where the total length (max value) is not known, i.e. an open-ended
progress bar.

class SafeProgressBar(maxval=None, widgets=None, term_width=None, poll=1, left_justify=True,
fd=None)

Bases: progressbar.progressbar.ProgressBar

Override basic progress bar to wrap update() method with a couple of extra features.

1. You don’t need to call start() – it will be called when the first update is received. This is good for processes
that have a bit of a start-up lag, or where starting to iterate might generate some other output.

2. An error is not raised if you update with a value higher than maxval. It’s the most annoying thing ever if
you run a long process and the whole thing fails near the end because you slightly miscalculated maxval.

update(value=None)
Updates the ProgressBar to a new value.

increment()

class DummyFileDescriptor
Bases: future.types.newobject.newobject

Passed in to ProgressBar instead of a file descriptor (e.g. stderr) to ensure that nothing gets output.

read(size=None)

readLine(size=None)

write(s)

close()

class NonOutputtingProgressBar(*args, **kwargs)
Bases: pimlico.utils.progress.SafeProgressBar

Behaves like ProgressBar, but doesn’t output anything.

class LittleOutputtingProgressBar(*args, **kwargs)
Bases: pimlico.utils.progress.SafeProgressBar

1.5. API Documentation 125

Pimlico Documentation, Release 0.9.23

Behaves like ProgressBar, but doesn’t output much. Instead of constantly redrawing the progress bar line, it
outputs a simple progress message every time it hits the next 10% mark.

If running on a terminal, this will update the line, as with a normal progress bar. If piping to a file, this will just
print a new line occasionally, so won’t fill up your file with thousands of progress updates.

start()
Starts measuring time, and prints the bar at 0%.

It returns self so you can use it like this: >>> pbar = ProgressBar().start() >>> for i in range(100): . . . #
do something . . . pbar.update(i+1) . . . >>> pbar.finish()

finish()
Puts the ProgressBar bar in the finished state.

slice_progress(iterable, num_items, title=None)

class ProgressBarIter(iterable, title=None)
Bases: future.types.newobject.newobject

pimlico.utils.strings module

truncate(s, length, ellipsis=u’...’)

similarities(targets, reference)
Compute string similarity of each of a list of targets to a given reference string. Uses difflib.SequenceMatcher
to compute similarity.

Parameters

• reference – compare all strings to this one

• targets – list of targets to measure similarity of

Returns list of similarity values

sorted_by_similarity(targets, reference)
Return target list sorted by similarity to the reference string. See :func:similarities for similarity measurement.

pimlico.utils.system module

Lowish-level system operations

set_proc_title(title)
Tries to set the current process title. This is very system-dependent and may not always work.

If it’s available, we use the setproctitle package, which is the most reliable way to do this. If not, we try doing
it by loading libc and calling prctl ourselves. This is not reliable and only works on Unix systems. If neither of
these works, we give up and return False.

If you want to increase the chances of this working (e.g. your process titles don’t seem to be getting set by
Pimlico and you’d like them to), try installing setproctitle, either system-wide or in Pimlico’s virtualenv.

@return: True if the process succeeds, False if there’s an error

pimlico.utils.timeout module

timeout(func, args=(), kwargs={}, timeout_duration=1, default=None)

126 Chapter 1. Contents

Pimlico Documentation, Release 0.9.23

pimlico.utils.urwid module

Some handy Urwid utilities.

Take care only to import this where we already have a dependency on Urwid, e.g. in the browser implementation
modules.

Some of these are taken pretty exactly from Urwid examples.

Todo: Not got these things working yet, but they’ll be useful in the long run

exception DialogExit
Bases: exceptions.Exception

class DialogDisplay(original_widget, text, height=0, width=0, body=None)
Bases: urwid.wimp.PopUpLauncher

palette = [('body', 'black', 'light gray', 'standout'), ('border', 'black', 'dark blue'), ('shadow', 'white', 'black'), ('selectable', 'black', 'dark cyan'), ('focus', 'white', 'dark blue', 'bold'), ('focustext', 'light gray', 'dark blue')]

add_buttons(buttons)

button_press(button)

on_exit(exitcode)

class ListDialogDisplay(original_widget, text, height, width, constr, items, has_default)
Bases: pimlico.utils.urwid.DialogDisplay

unhandled_key(size, k)

on_exit(exitcode)
Print the tag of the item selected.

msgbox(original_widget, text, height=0, width=0)

options_dialog(original_widget, text, options, height=0, width=0, *items)

yesno_dialog(original_widget, text, height=0, width=0, *items)

pimlico.utils.web module

download_file(url, target_file)
Now just an alias for urllib.urlretrieve()

Module contents

Submodules

pimlico.cfg module

Global config

Various global variables. Access as follows:

from pimlico import cfg

Set global config parameter cfg.parameter = “Value” # Use parameter print cfg.parameter

1.5. API Documentation 127

Pimlico Documentation, Release 0.9.23

There are some global variables in pimlico (in the __init__.py) that probably should be moved here, but I’m leaving
them for now. At the moment, none of those are ever written from outside that file (i.e. think of them as constants,
rather than config), so the only reason to move them is to keep everything in one place.

Module contents

The Pimlico Processing Toolkit (PIpelined Modular LInguistic COrpus processing) is a toolkit for building pipelines
made up of linguistic processing tasks to run on large datasets (corpora). It provides a wrappers around many existing,
widely used NLP (Natural Language Processing) tools.

install_core_dependencies()

1.6 Module test pipelines

Test pipelines provide a special sort of unit testing for Pimlico.

Pimlico is distributed with a set of test pipeline config files, each just a small pipeline with a couple of modules in it.
Each is designed to test the use of a particular one of Pimlico’s builtin module types, or some combination of a smaller
number of them.

1.6.1 Available pipelines

nltk_nist_tokenize

This is one of the test pipelines included in Pimlico’s repository. See Module test pipelines for more details.

Config file

The complete config file for this test pipeline:

[pipeline]
name=nltk_nist_tokenize
release=latest

Prepared grouped corpus of raw text data
[europarl]
type=pimlico.datatypes.corpora.GroupedCorpus
data_point_type=RawTextDocumentType
dir=%(test_data_dir)s/datasets/text_corpora/europarl

Tokenize the data using NLTK's simple NIST tokenizer
[tokenize_euro]
type=pimlico.modules.nltk.nist_tokenize

Another tokenization, using the non_european option
[tokenize_non_euro]
type=pimlico.modules.nltk.nist_tokenize
input=europarl
non_european=T

128 Chapter 1. Contents

Pimlico Documentation, Release 0.9.23

Modules

The following Pimlico module types are used in this pipeline:

• nist_tokenize

• nist_tokenize

simple_tokenize

This is one of the test pipelines included in Pimlico’s repository. See Module test pipelines for more details.

Config file

The complete config file for this test pipeline:

[pipeline]
name=simple_tokenize
release=latest

Take input from a prepared Pimlico dataset
[europarl]
type=pimlico.datatypes.corpora.GroupedCorpus
This corpus is actually tokenized text, but we treat it as raw text and apply the
→˓char tokenizer
data_point_type=RawTextDocumentType
dir=%(test_data_dir)s/datasets/corpora/tokenized

[tokenize]
type=pimlico.modules.text.char_tokenize

Modules

The following Pimlico module types are used in this pipeline:

• char_tokenize

normalize

This is one of the test pipelines included in Pimlico’s repository. See Module test pipelines for more details.

Config file

The complete config file for this test pipeline:

[pipeline]
name=normalize
release=latest

Take input from a prepared Pimlico dataset
[europarl]
type=pimlico.datatypes.corpora.GroupedCorpus

(continues on next page)

1.6. Module test pipelines 129

Pimlico Documentation, Release 0.9.23

(continued from previous page)

data_point_type=RawTextDocumentType
dir=%(test_data_dir)s/datasets/text_corpora/europarl

[norm]
type=pimlico.modules.text.text_normalize
case=lower
strip=T
blank_lines=T

Modules

The following Pimlico module types are used in this pipeline:

• text_normalize

normalize

This is one of the test pipelines included in Pimlico’s repository. See Module test pipelines for more details.

Config file

The complete config file for this test pipeline:

[pipeline]
name=normalize
release=latest

Take input from a prepared Pimlico dataset
[europarl]
type=pimlico.datatypes.corpora.GroupedCorpus
data_point_type=TokenizedDocumentType
dir=%(test_data_dir)s/datasets/corpora/tokenized

[norm]
type=pimlico.modules.text.normalize
case=lower
remove_empty=T

Modules

The following Pimlico module types are used in this pipeline:

• normalize

simple_tokenize

This is one of the test pipelines included in Pimlico’s repository. See Module test pipelines for more details.

130 Chapter 1. Contents

Pimlico Documentation, Release 0.9.23

Config file

The complete config file for this test pipeline:

[pipeline]
name=simple_tokenize
release=latest

Take input from a prepared Pimlico dataset
[europarl]
type=pimlico.datatypes.corpora.GroupedCorpus
This corpus is actually tokenized text, but we treat it as raw text and apply the
→˓simple tokenizer
data_point_type=RawTextDocumentType
dir=%(test_data_dir)s/datasets/corpora/tokenized

[tokenize]
type=pimlico.modules.text.simple_tokenize

Modules

The following Pimlico module types are used in this pipeline:

• simple_tokenize

embeddings_plot

This is one of the test pipelines included in Pimlico’s repository. See Module test pipelines for more details.

Config file

The complete config file for this test pipeline:

Plot trained embeddings
[pipeline]
name=embeddings_plot
release=latest

Take trained embeddings from a prepared Pimlico dataset
[embeddings]
type=pimlico.datatypes.embeddings.Embeddings
dir=%(test_data_dir)s/datasets/embeddings

[plot]
type=pimlico.modules.visualization.embeddings_plot

Modules

The following Pimlico module types are used in this pipeline:

• embeddings_plot

1.6. Module test pipelines 131

Pimlico Documentation, Release 0.9.23

filter_map

This is one of the test pipelines included in Pimlico’s repository. See Module test pipelines for more details.

Config file

The complete config file for this test pipeline:

Pipeline designed to test the use of a document
map module as a filter. It uses the text normalization
module and will therefore fail if that module's
test is also failing, but since the module is so
simple, this is unlikely

[pipeline]
name=filter_map
release=latest

Take input from a prepared Pimlico dataset
[europarl]
type=pimlico.datatypes.corpora.GroupedCorpus
data_point_type=TokenizedDocumentType
dir=%(test_data_dir)s/datasets/corpora/tokenized

Apply text normalization
Unlike the test text/normalize.conf, we apply this
as a filter, so its result is not stored, but computed
on the fly and passed straight through to the
next module
[norm_filter]
type=pimlico.modules.text.normalize
Use the general filter option, which can be applied
to any document map module
filter=T
case=lower

Store the result of the previous, filter, module.
This is a stupid thing to do, since we could have
just not used the module as a filter and had the
same effect, but we do it here to test the use
of a module as a filter
[store]
type=pimlico.modules.corpora.store

Modules

The following Pimlico module types are used in this pipeline:

• store

xml_test

This is one of the test pipelines included in Pimlico’s repository. See Module test pipelines for more details.

132 Chapter 1. Contents

Pimlico Documentation, Release 0.9.23

Config file

The complete config file for this test pipeline:

Test for the XML input module
#
Read in raw text data from the Estonian Reference Corpus:
https://www.cl.ut.ee/korpused/segakorpus/
We have a tiny subset of the corpus here. It can be read using
the standard XML input module.

[pipeline]
name=xml_test
release=latest

Read in some XML files from Est Ref
[input]
type=pimlico.modules.input.xml
files=%(test_data_dir)s/datasets/est_ref/*.tei
document_node_type=text

raw_text_files_test

This is one of the test pipelines included in Pimlico’s repository. See Module test pipelines for more details.

Config file

The complete config file for this test pipeline:

[pipeline]
name=raw_text_files_test
release=latest

Read in some Europarl raw files
[europarl]
type=pimlico.modules.input.text.raw_text_files
files=%(test_data_dir)s/datasets/europarl_en_raw/*

fasttext_input_test

This is one of the test pipelines included in Pimlico’s repository. See Module test pipelines for more details.

Config file

The complete config file for this test pipeline:

[pipeline]
name=fasttext_input_test
release=latest

Read in some vectors

(continues on next page)

1.6. Module test pipelines 133

Pimlico Documentation, Release 0.9.23

(continued from previous page)

[vectors]
type=pimlico.modules.input.embeddings.fasttext
path=%(test_data_dir)s/input_data/fasttext/wiki.en_top50.vec

Modules

The following Pimlico module types are used in this pipeline:

• fasttext

glove_input_test

This is one of the test pipelines included in Pimlico’s repository. See Module test pipelines for more details.

Config file

The complete config file for this test pipeline:

[pipeline]
name=glove_input_test
release=latest

Read in some vectors
[vectors]
type=pimlico.modules.input.embeddings.glove
path=%(test_data_dir)s/input_data/glove/glove.small.300d.txt

Modules

The following Pimlico module types are used in this pipeline:

• glove

tsvvec_store

This is one of the test pipelines included in Pimlico’s repository. See Module test pipelines for more details.

Config file

The complete config file for this test pipeline:

Output trained embeddings in the TSV format for external use
[pipeline]
name=tsvvec_store
release=latest

Take trained embeddings from a prepared Pimlico dataset
[embeddings]

(continues on next page)

134 Chapter 1. Contents

Pimlico Documentation, Release 0.9.23

(continued from previous page)

type=pimlico.datatypes.embeddings.Embeddings
dir=%(test_data_dir)s/datasets/embeddings

[store]
type=pimlico.modules.embeddings.store_tsv

Modules

The following Pimlico module types are used in this pipeline:

• store_tsv

word2vec_train

This is one of the test pipelines included in Pimlico’s repository. See Module test pipelines for more details.

Config file

The complete config file for this test pipeline:

[pipeline]
name=word2vec_train
release=latest

Take tokenized text input from a prepared Pimlico dataset
[europarl]
type=pimlico.datatypes.corpora.GroupedCorpus
data_point_type=TokenizedDocumentType
dir=%(test_data_dir)s/datasets/corpora/tokenized

[word2vec]
type=pimlico.modules.embeddings.word2vec
Set low, since we're training on a tiny corpus
min_count=1
Very small vectors: usually this will be more like 100 or 200
size=10

Modules

The following Pimlico module types are used in this pipeline:

• word2vec

word2vec_store

This is one of the test pipelines included in Pimlico’s repository. See Module test pipelines for more details.

1.6. Module test pipelines 135

Pimlico Documentation, Release 0.9.23

Config file

The complete config file for this test pipeline:

Output trained embeddings in the word2vec format for external use
[pipeline]
name=word2vec_store
release=latest

Take trained embeddings from a prepared Pimlico dataset
[embeddings]
type=pimlico.datatypes.embeddings.Embeddings
dir=%(test_data_dir)s/datasets/embeddings

[store]
type=pimlico.modules.embeddings.store_word2vec

Modules

The following Pimlico module types are used in this pipeline:

• store_word2vec

opennlp_tokenize

This is one of the test pipelines included in Pimlico’s repository. See Module test pipelines for more details.

Config file

The complete config file for this test pipeline:

[pipeline]
name=opennlp_tokenize
release=latest

Prepared tarred corpus
[europarl]
type=pimlico.datatypes.corpora.GroupedCorpus
data_point_type=RawTextDocumentType
dir=%(test_data_dir)s/datasets/text_corpora/europarl

There's a problem with the tests here
Pimlico still has a clunky old Makefile-based system for installing model data for
→˓modules
The tests don't know that this needs to be done before the pipeline can be run
This is why this test is not in the main suite, but a special OpenNLP one
[tokenize]
type=pimlico.modules.opennlp.tokenize
token_model=en-token.bin
sentence_model=en-sent.bin

136 Chapter 1. Contents

Pimlico Documentation, Release 0.9.23

Modules

The following Pimlico module types are used in this pipeline:

• tokenize

store

This is one of the test pipelines included in Pimlico’s repository. See Module test pipelines for more details.

Config file

The complete config file for this test pipeline:

[pipeline]
name=store
release=latest

Read in some Europarl raw files
[europarl]
type=pimlico.modules.input.text.raw_text_files
files=%(test_data_dir)s/datasets/europarl_en_raw/*
encoding=utf8

Group works as a filter module, so its output is not stored.
This pipeline shows how you can store the output from such a
module for static use by later modules.
In this exact case, you don't gain anything by doing that, since
the grouping filter is fast, but sometimes it could be desirable
with other filters
[group]
type=pimlico.modules.corpora.group

[store]
type=pimlico.modules.corpora.store

Modules

The following Pimlico module types are used in this pipeline:

• group

• store

shuffle

This is one of the test pipelines included in Pimlico’s repository. See Module test pipelines for more details.

Config file

The complete config file for this test pipeline:

1.6. Module test pipelines 137

Pimlico Documentation, Release 0.9.23

[pipeline]
name=shuffle
release=latest

Take input from a prepared Pimlico dataset
[europarl]
type=pimlico.datatypes.corpora.GroupedCorpus
data_point_type=RawTextDocumentType
dir=%(test_data_dir)s/datasets/text_corpora/europarl

[shuffle]
type=pimlico.modules.corpora.shuffle

Modules

The following Pimlico module types are used in this pipeline:

• shuffle

filter_tokenize

This is one of the test pipelines included in Pimlico’s repository. See Module test pipelines for more details.

Config file

The complete config file for this test pipeline:

Essentially the same as the simple_tokenize test pipeline,
but uses the filter=T parameter on the tokenizer.
This can be applied to any document map module, so this
is intended as a test for that feature, rather than for
simple_tokenize

[pipeline]
name=filter_tokenize
release=latest

[europarl]
type=pimlico.datatypes.corpora.GroupedCorpus
This corpus is actually tokenized text, but we treat it as raw text and apply the
→˓simple tokenizer
data_point_type=RawTextDocumentType
dir=%(test_data_dir)s/datasets/corpora/tokenized

Tokenize as a filter: this module is not executable
[tokenize]
type=pimlico.modules.text.simple_tokenize
filter=T

Then store the output
You wouldn't really want to do this, as it's equivalent to not using
the tokenizer as a filter! But we're testing the filter feature
[store]
type=pimlico.modules.corpora.store

138 Chapter 1. Contents

Pimlico Documentation, Release 0.9.23

Modules

The following Pimlico module types are used in this pipeline:

• store

vocab_mapper

This is one of the test pipelines included in Pimlico’s repository. See Module test pipelines for more details.

Config file

The complete config file for this test pipeline:

[pipeline]
name=vocab_mapper
release=latest

Take input from a prepared Pimlico dataset
[europarl]
type=pimlico.datatypes.corpora.GroupedCorpus
data_point_type=TokenizedDocumentType
dir=%(test_data_dir)s/datasets/corpora/tokenized

Load the prepared vocabulary
(created by the vocab_builder test pipeline)
[vocab]
type=pimlico.datatypes.dictionary.Dictionary
dir=%(test_data_dir)s/datasets/vocab

Perform the mapping from words to IDs
[ids]
type=pimlico.modules.corpora.vocab_mapper
input_vocab=vocab
input_text=europarl

Modules

The following Pimlico module types are used in this pipeline:

• vocab_mapper

concat

This is one of the test pipelines included in Pimlico’s repository. See Module test pipelines for more details.

Config file

The complete config file for this test pipeline:

1.6. Module test pipelines 139

Pimlico Documentation, Release 0.9.23

[pipeline]
name=concat
release=latest

Take input from some prepared Pimlico datasets
[europarl1]
type=pimlico.datatypes.corpora.GroupedCorpus
data_point_type=RawTextDocumentType
dir=%(test_data_dir)s/datasets/text_corpora/europarl

[europarl2]
type=pimlico.datatypes.corpora.GroupedCorpus
data_point_type=RawTextDocumentType
dir=%(test_data_dir)s/datasets/text_corpora/europarl2

[concat]
type=pimlico.modules.corpora.concat
input_corpora=europarl1,europarl2

[output]
type=pimlico.modules.corpora.format

Modules

The following Pimlico module types are used in this pipeline:

• concat

• format

group

This is one of the test pipelines included in Pimlico’s repository. See Module test pipelines for more details.

Config file

The complete config file for this test pipeline:

[pipeline]
name=group
release=latest

Read in some Europarl raw files
[europarl]
type=pimlico.modules.input.text.raw_text_files
files=%(test_data_dir)s/datasets/europarl_en_raw/*
encoding=utf8

[group]
type=pimlico.modules.corpora.group

[output]
type=pimlico.modules.corpora.format

140 Chapter 1. Contents

Pimlico Documentation, Release 0.9.23

Modules

The following Pimlico module types are used in this pipeline:

• group

• format

vocab_builder

This is one of the test pipelines included in Pimlico’s repository. See Module test pipelines for more details.

Config file

The complete config file for this test pipeline:

[pipeline]
name=vocab_builder
release=latest

Take input from a prepared Pimlico dataset
[europarl]
type=pimlico.datatypes.corpora.GroupedCorpus
data_point_type=TokenizedDocumentType
dir=%(test_data_dir)s/datasets/corpora/tokenized

[vocab]
type=pimlico.modules.corpora.vocab_builder
threshold=2
limit=500

Modules

The following Pimlico module types are used in this pipeline:

• vocab_builder

subset

This is one of the test pipelines included in Pimlico’s repository. See Module test pipelines for more details.

Config file

The complete config file for this test pipeline:

[pipeline]
name=subset
release=latest

Take input from a prepared Pimlico dataset
[europarl]
type=pimlico.datatypes.corpora.GroupedCorpus

(continues on next page)

1.6. Module test pipelines 141

Pimlico Documentation, Release 0.9.23

(continued from previous page)

data_point_type=RawTextDocumentType
dir=%(test_data_dir)s/datasets/text_corpora/europarl

[subset]
type=pimlico.modules.corpora.subset
size=1
offset=2

[output]
type=pimlico.modules.corpora.format

Modules

The following Pimlico module types are used in this pipeline:

• subset

• format

interleave

This is one of the test pipelines included in Pimlico’s repository. See Module test pipelines for more details.

Config file

The complete config file for this test pipeline:

[pipeline]
name=interleave
release=latest

Take input from some prepared Pimlico datasets
[europarl1]
type=pimlico.datatypes.corpora.GroupedCorpus
data_point_type=RawTextDocumentType
dir=%(test_data_dir)s/datasets/text_corpora/europarl

[europarl2]
type=pimlico.datatypes.corpora.GroupedCorpus
data_point_type=RawTextDocumentType
dir=%(test_data_dir)s/datasets/text_corpora/europarl2

[interleave]
type=pimlico.modules.corpora.interleave
input_corpora=europarl1,europarl2

[output]
type=pimlico.modules.corpora.format

142 Chapter 1. Contents

Pimlico Documentation, Release 0.9.23

Modules

The following Pimlico module types are used in this pipeline:

• interleave

• format

vocab_counter

This is one of the test pipelines included in Pimlico’s repository. See Module test pipelines for more details.

Config file

The complete config file for this test pipeline:

[pipeline]
name=vocab_counter
release=latest

Load the prepared vocabulary
(created by the vocab_builder test pipeline)
[vocab]
type=pimlico.datatypes.dictionary.Dictionary
dir=%(test_data_dir)s/datasets/vocab

Load the prepared token IDs
(created by the vocab_mapper test pipeline)
[ids]
type=pimlico.datatypes.corpora.GroupedCorpus
data_point_type=IntegerListsDocumentType
dir=%(test_data_dir)s/datasets/corpora/ids

Count the frequency of each word in the corpus
[counts]
type=pimlico.modules.corpora.vocab_counter
input_corpus=ids
input_vocab=vocab

Modules

The following Pimlico module types are used in this pipeline:

• vocab_counter

stats

This is one of the test pipelines included in Pimlico’s repository. See Module test pipelines for more details.

Config file

The complete config file for this test pipeline:

1.6. Module test pipelines 143

Pimlico Documentation, Release 0.9.23

[pipeline]
name=stats
release=latest

Take input from a prepared Pimlico dataset
[europarl]
type=pimlico.datatypes.corpora.GroupedCorpus
data_point_type=TokenizedDocumentType
dir=%(test_data_dir)s/datasets/corpora/tokenized

[stats]
type=pimlico.modules.corpora.corpus_stats

Modules

The following Pimlico module types are used in this pipeline:

• corpus_stats

list_filter

This is one of the test pipelines included in Pimlico’s repository. See Module test pipelines for more details.

Config file

The complete config file for this test pipeline:

[pipeline]
name=list_filter
release=latest

Take input from a prepared Pimlico dataset
[europarl]
type=pimlico.datatypes.corpora.GroupedCorpus
data_point_type=RawTextDocumentType
dir=%(test_data_dir)s/datasets/text_corpora/europarl

[filename_list]
type=StringList
dir=%(test_data_dir)s/datasets/europarl_filename_list

Use the filename list to filter the documents
This should leave 3 documents (of original 5)
[europarl_filtered]
type=pimlico.modules.corpora.list_filter
input_corpus=europarl
input_list=filename_list

Modules

The following Pimlico module types are used in this pipeline:

• list_filter

144 Chapter 1. Contents

Pimlico Documentation, Release 0.9.23

split

This is one of the test pipelines included in Pimlico’s repository. See Module test pipelines for more details.

Config file

The complete config file for this test pipeline:

[pipeline]
name=split
release=latest

Take input from a prepared Pimlico dataset
[europarl]
type=pimlico.datatypes.corpora.GroupedCorpus
data_point_type=RawTextDocumentType
dir=%(test_data_dir)s/datasets/text_corpora/europarl

[split]
type=pimlico.modules.corpora.split
set1_size=2

Modules

The following Pimlico module types are used in this pipeline:

• split

tokenized_formatter

This is one of the test pipelines included in Pimlico’s repository. See Module test pipelines for more details.

Config file

The complete config file for this test pipeline:

Test the tokenized text formatter
[pipeline]
name=tokenized_formatter
release=latest

Take input from a prepared tokenized dataset
[europarl]
type=pimlico.datatypes.corpora.GroupedCorpus
data_point_type=TokenizedDocumentType
dir=%(test_data_dir)s/datasets/corpora/tokenized

Format the tokenized data using the default formatter,
which is declared for the tokenized datatype
[format]
type=pimlico.modules.corpora.format

1.6. Module test pipelines 145

Pimlico Documentation, Release 0.9.23

Modules

The following Pimlico module types are used in this pipeline:

• format

1.6.2 Input data

Pimlico also comes with all the data necessary to run the pipelines. They all use very small datasets, so that they don’t
take long to run and can be easily distributed.

Some of the datasets are raw data, of the sort you might find in a distributed corpus, and these are used to test input
readers for that type of data. Most, however, are stored in one of Pimlico’s datatype formats, exactly as they were
output from some other module (most often from another test pipeline), so that they can be read in to test one module
in isolation.

1.6.3 Usage examples

In addition to providing unit testing for core Pimlico modules, test pipelines also function as a source of examples of
each module’s usage. They are for that reason linked to from the module’s documentation, so that example usages can
be easily found where available.

1.6.4 Running

To run test pipelines, you can use the script test_pipeline.sh in Pimlico’s bin directory, e.g.:

./test_pipeline.sh ../test/data/pipelines/corpora/concat.conf output

This will load a single test pipeline from the given config file and execute the module named output.

There are also some suites of tests, specified as CSV files giving a number of config files and module names to execute
for each. To run the main suite of test pipelines for Pimlico’s core modules, run:

./all_test_pipelines.sh

1.7 Future plans

Various things I plan to add to Pimlico in the futures. For a summary, see Pimlico Wishlist.

1.7.1 Pimlico Wishlist

Things I plan to add to Pimlico.

• Further modules:

– CherryPicker for coreference resolution

– Berkeley Parser for fast constituency parsing

– Reconcile coref. Seems to incorporate upstream NLP tasks. Would want to interface such that we can
reuse output from other modules and just do coref.

146 Chapter 1. Contents

https://www.cs.utah.edu/nlp/reconcile/

Pimlico Documentation, Release 0.9.23

• Pipeline graph visualizations: Outputting pipeline diagrams. Maybe an interactive GUI to help with viewing
large pipelines

• See issue list on Github for other specific plans

• Big redesign of datatype implementation is documented as a Github project

Todos

The following to-dos appear elsewhere in the docs. They are generally bits of the documentation I’ve not written yet,
but am aware are needed.

Todo: Not got these things working yet, but they’ll be useful in the long run

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/pimlico/checkouts/python3/src/python/pimlico/utils/urwid.py:docstring
of pimlico.utils.urwid, line 8.)

Todo: Describe how module dependencies are defined for different types of deps

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/pimlico/checkouts/python3/docs/core/dependencies.rst,
line 73.)

Todo: Include some examples from the core modules of how deps are defined and some special cases of software
fetching

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/pimlico/checkouts/python3/docs/core/dependencies.rst,
line 80.)

Todo: Write documentation for this

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/pimlico/checkouts/python3/docs/core/module_structure.rst,
line 9.)

Todo: Filter module guide needs to be updated for new datatypes. This section is currently completely wrong –
ignore it! This is quite a substantial change.

The difficulty of describing what you need to do here suggests we might want to provide some utilities to make this
easier!

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/pimlico/checkouts/python3/docs/guides/filters.rst,
line 31.)

Todo: Write a guide to building document map modules.

For now, the skeletons below are a useful starting point, but there should be a more fulsome explanation here of what
document map modules are all about and how to use them.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/pimlico/checkouts/python3/docs/guides/map_module.rst,
line 5.)

1.7. Future plans 147

https://github.com/markgw/pimlico/issues
https://github.com/markgw/pimlico/projects/1

Pimlico Documentation, Release 0.9.23

Todo: Document map module guides needs to be updated for new datatypes.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/pimlico/checkouts/python3/docs/guides/map_module.rst,
line 12.)

Todo: Module writing guide needs to be updated for new datatypes.

In particular, the executor example and datatypes in the module definition need to be updated.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/pimlico/checkouts/python3/docs/guides/module.rst,
line 23.)

Todo: Setup guide has a lot that needs to be updated for the new datatypes system. I’ve updated up to Getting input.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/pimlico/checkouts/python3/docs/guides/setup.rst,
line 5.)

Todo: Continue writing from here

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/pimlico/checkouts/python3/docs/guides/setup.rst,
line 110.)

Todo: Add test pipeline and test

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/pimlico/checkouts/python3/docs/modules/pimlico.modules.gensim.lda.rst,
line 15.)

Todo: Add test pipeline and test

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/pimlico/checkouts/python3/docs/modules/pimlico.modules.gensim.lda_doc_topics.rst,
line 19.)

Todo: Add test pipeline. This is slightly difficult, as we need a small FastText binary file, which is harder to produce,
since you can’t easily just truncate a big file.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/pimlico/checkouts/python3/docs/modules/pimlico.modules.input.embeddings.fasttext_gensim.rst,
line 27.)

Todo: Update to new datatypes system and add test pipeline

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/pimlico/checkouts/python3/docs/modules/pimlico.modules.input.text_annotations.vrt_text.rst,
line 24.)

Todo: Currently skipped from module doc generator, until updated

148 Chapter 1. Contents

Pimlico Documentation, Release 0.9.23

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/pimlico/checkouts/python3/docs/modules/pimlico.modules.input.text_annotations.vrt_text.rst,
line 28.)

Todo: Add test pipeline

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/pimlico/checkouts/python3/docs/modules/pimlico.modules.input.xml.rst,
line 15.)

1.7.2 Berkeley Parser

https://github.com/slavpetrov/berkeleyparser

Java constituency parser. Pre-trained models are also provided in the Github repo.

Probably no need for a Java wrapper here. The parser itself accepts input on stdin and outputs to stdout, so just use a
subprocess with pipes.

1.7.3 Cherry Picker

Coreference resolver

http://www.hlt.utdallas.edu/~altaf/cherrypicker/

Requires NER, POS tagging and constituency parsing to be done first. Tools for all of these are included in the Cherry
Picker codebase, but we just need a wrapper around the Cherry Picker tool itself to be able to feed these annotations
in from other modules and perform coref.

Write a Java wrapper and interface with it using Py4J, as with OpenNLP.

1.7.4 Outputting pipeline diagrams

Once pipeline config files get big, it can be difficult to follow what’s going on in them, especially if the structure is
more complex than just a linear pipeline. A useful feature would be the ability to display/output a visualization of the
pipeline as a flow graph.

It looks like the easiest way to do this will be to construct a DOT graph using Graphviz/Pydot and then output the
diagram using Graphviz.

http://www.graphviz.org

https://pypi.python.org/pypi/pydot

Building the graph should be pretty straightforward, since the mapping from modules to nodes is fairly direct.

We could also add extra information to the nodes, like current execution status.

• genindex

• search

1.7. Future plans 149

https://github.com/slavpetrov/berkeleyparser
http://www.hlt.utdallas.edu/~altaf/cherrypicker/
http://www.graphviz.org
https://pypi.python.org/pypi/pydot

Pimlico Documentation, Release 0.9.23

150 Chapter 1. Contents

Python Module Index

c
pimlico.cfg, 127
pimlico.cli, 109
pimlico.cli.browser, 102
pimlico.cli.browser.tool, 102
pimlico.cli.browser.tools, 101
pimlico.cli.browser.tools.files, 101
pimlico.cli.clean, 104
pimlico.cli.debug, 102
pimlico.cli.loaddump, 105
pimlico.cli.locations, 105
pimlico.cli.newmodule, 106
pimlico.cli.pyshell, 106
pimlico.cli.reset, 107
pimlico.cli.shell, 104
pimlico.cli.shell.base, 102
pimlico.cli.shell.commands, 103
pimlico.cli.shell.runner, 104
pimlico.cli.status, 107
pimlico.cli.subcommands, 108
pimlico.cli.testemail, 108
pimlico.cli.util, 108
pimlico.core, 117
pimlico.core.dependencies, 114
pimlico.core.dependencies.base, 109
pimlico.core.dependencies.core, 111
pimlico.core.dependencies.python, 112
pimlico.core.dependencies.versions, 114
pimlico.core.external, 115
pimlico.core.external.java, 114
pimlico.core.logs, 117
pimlico.core.modules, 117
pimlico.core.modules.options, 116
pimlico.core.paths, 117

m
pimlico.modules, 43
pimlico.modules.candc, 43
pimlico.modules.corenlp, 43

pimlico.modules.corpora, 43
pimlico.modules.corpora.concat, 44
pimlico.modules.corpora.corpus_stats,

44
pimlico.modules.corpora.format, 45
pimlico.modules.corpora.group, 46
pimlico.modules.corpora.interleave, 48
pimlico.modules.corpora.list_filter, 49
pimlico.modules.corpora.shuffle, 50
pimlico.modules.corpora.split, 51
pimlico.modules.corpora.store, 53
pimlico.modules.corpora.subset, 54
pimlico.modules.corpora.vocab_builder,

55
pimlico.modules.corpora.vocab_counter,

56
pimlico.modules.corpora.vocab_mapper,

58
pimlico.modules.embeddings, 59
pimlico.modules.embeddings.dependencies,

59
pimlico.modules.embeddings.store_embeddings,

59
pimlico.modules.embeddings.store_tsv,

60
pimlico.modules.embeddings.store_word2vec,

61
pimlico.modules.embeddings.word2vec, 62
pimlico.modules.features, 63
pimlico.modules.features.term_feature_compiler,

63
pimlico.modules.features.term_feature_matrix_builder,

63
pimlico.modules.features.vocab_builder,

63
pimlico.modules.features.vocab_mapper,

63
pimlico.modules.gensim, 63
pimlico.modules.gensim.lda, 63
pimlico.modules.gensim.lda_doc_topics,

151

Pimlico Documentation, Release 0.9.23

66
pimlico.modules.input, 67
pimlico.modules.input.embeddings, 67
pimlico.modules.input.embeddings.fasttext,

67
pimlico.modules.input.embeddings.fasttext_gensim,

68
pimlico.modules.input.embeddings.glove,

69
pimlico.modules.input.embeddings.word2vec,

70
pimlico.modules.input.text, 71
pimlico.modules.input.text.raw_text_archives,

71
pimlico.modules.input.text.raw_text_files,

72
pimlico.modules.input.text_annotations,

74
pimlico.modules.input.text_annotations.vrt_text,

74
pimlico.modules.input.xml, 75
pimlico.modules.malt, 77
pimlico.modules.malt.conll_parser_input,

77
pimlico.modules.malt.parse, 77
pimlico.modules.nltk, 77
pimlico.modules.nltk.nist_tokenize, 77
pimlico.modules.opennlp, 78
pimlico.modules.opennlp.coreference, 79
pimlico.modules.opennlp.coreference_pipeline,

79
pimlico.modules.opennlp.ner, 79
pimlico.modules.opennlp.parse, 79
pimlico.modules.opennlp.pos, 79
pimlico.modules.opennlp.tokenize, 79
pimlico.modules.output, 80
pimlico.modules.output.text_corpus, 81
pimlico.modules.r, 82
pimlico.modules.r.script, 82
pimlico.modules.regex, 82
pimlico.modules.regex.annotated_text,

82
pimlico.modules.sklearn, 82
pimlico.modules.sklearn.logistic_regression,

82
pimlico.modules.sklearn.matrix_factorization,

83
pimlico.modules.text, 83
pimlico.modules.text.char_tokenize, 84
pimlico.modules.text.normalize, 84
pimlico.modules.text.simple_tokenize,

86
pimlico.modules.text.text_normalize, 87
pimlico.modules.utility, 88

pimlico.modules.utility.alias, 88
pimlico.modules.utility.collect_files,

88
pimlico.modules.utility.copy_file, 88
pimlico.modules.visualization, 88
pimlico.modules.visualization.bar_chart,

88
pimlico.modules.visualization.embeddings_plot,

89

p
pimlico, 128

t
pimlico.test, 119

u
pimlico.utils, 127
pimlico.utils.communicate, 119
pimlico.utils.core, 120
pimlico.utils.docs, 119
pimlico.utils.docs.rest, 119
pimlico.utils.email, 121
pimlico.utils.filesystem, 122
pimlico.utils.format, 122
pimlico.utils.linguistic, 123
pimlico.utils.logging, 123
pimlico.utils.network, 123
pimlico.utils.pipes, 123
pimlico.utils.pos, 124
pimlico.utils.probability, 124
pimlico.utils.progress, 125
pimlico.utils.strings, 126
pimlico.utils.system, 126
pimlico.utils.timeout, 126
pimlico.utils.urwid, 127
pimlico.utils.web, 127

152 Python Module Index

Index

A
abs_path_or_model_dir_path() (in module

pimlico.core.paths), 117
add_arguments() (DumpCmd method), 105
add_arguments() (InputsCmd method), 105
add_arguments() (LoadCmd method), 105
add_arguments() (MoveStoresCmd method), 106
add_arguments() (OutputCmd method), 106
add_arguments() (PimlicoCLISubcommand

method), 108
add_arguments() (PythonShellCmd method), 107
add_arguments() (ResetCmd method), 107
add_arguments() (ShellCLICmd method), 104
add_arguments() (StatusCmd method), 107
add_buttons() (DialogDisplay method), 127
all_dependencies() (SoftwareDependency

method), 110
Any (class in pimlico.core.dependencies.base), 110
ask() (in module pimlico.cli.newmodule), 106
available() (Any method), 110
available() (SoftwareDependency method), 109

B
batched_randint() (in module pim-

lico.utils.probability), 124
BeautifulSoupDependency (class in pim-

lico.core.dependencies.python), 113
browse_cmd() (in module pimlico.cli.browser.tool),

102
browse_files() (in module pim-

lico.cli.browser.tools.files), 101
button_press() (DialogDisplay method), 127

C
cached_property (class in pimlico.utils.core), 121
call_java() (in module pimlico.core.external.java),

114
check_and_install() (in module pim-

lico.core.dependencies.base), 111

choose_from_list() (in module pim-
lico.core.modules.options), 116

chunk_list() (in module pimlico.utils.core), 121
CleanCmd (class in pimlico.cli.clean), 104
clear_output_queues() (Py4JInterface method),

114
close() (DummyFileDescriptor method), 125
cmdloop() (DataShell method), 103
comma_separated_list() (in module pim-

lico.core.modules.options), 116
comma_separated_strings() (in module pim-

lico.core.modules.options), 116
command_desc (CleanCmd attribute), 104
command_desc (DumpCmd attribute), 105
command_desc (InputsCmd attribute), 105
command_desc (ListStoresCmd attribute), 106
command_desc (LoadCmd attribute), 105
command_desc (MoveStoresCmd attribute), 106
command_desc (NewModuleCmd attribute), 106
command_desc (PimlicoCLISubcommand attribute),

108
command_help (CleanCmd attribute), 104
command_help (DumpCmd attribute), 105
command_help (EmailCmd attribute), 108
command_help (InputsCmd attribute), 105
command_help (ListStoresCmd attribute), 106
command_help (LoadCmd attribute), 105
command_help (MoveStoresCmd attribute), 106
command_help (NewModuleCmd attribute), 106
command_help (OutputCmd attribute), 106
command_help (PimlicoCLISubcommand attribute),

108
command_help (PythonShellCmd attribute), 107
command_help (ResetCmd attribute), 107
command_help (ShellCLICmd attribute), 104
command_help (StatusCmd attribute), 107
command_name (CleanCmd attribute), 104
command_name (DumpCmd attribute), 105
command_name (EmailCmd attribute), 108
command_name (InputsCmd attribute), 105

153

Pimlico Documentation, Release 0.9.23

command_name (ListStoresCmd attribute), 106
command_name (LoadCmd attribute), 105
command_name (MoveStoresCmd attribute), 106
command_name (NewModuleCmd attribute), 106
command_name (OutputCmd attribute), 106
command_name (PimlicoCLISubcommand attribute),

108
command_name (PythonShellCmd attribute), 107
command_name (ResetCmd attribute), 107
command_name (ShellCLICmd attribute), 104
command_name (StatusCmd attribute), 107
commands (MetadataCmd attribute), 103
commands (PythonCmd attribute), 103
commands (ShellCommand attribute), 102
compare_dotted_versions() (in module pim-

lico.core.dependencies.versions), 114
copy_dir_with_progress() (in module pim-

lico.utils.filesystem), 122
CORE_PIMLICO_DEPENDENCIES (in module pim-

lico.core.dependencies.core), 111

D
DataShell (class in pimlico.cli.shell.base), 102
default() (DataShell method), 103
dependencies() (Any method), 110
dependencies() (NLTKResource method), 114
dependencies() (SoftwareDependency method), 109
DependencyCheckerError, 115
DialogDisplay (class in pimlico.utils.urwid), 127
DialogExit, 127
dirsize() (in module pimlico.utils.filesystem), 122
do_EOF() (DataShell method), 103
download_file() (in module pimlico.utils.web), 127
DummyFileDescriptor (class in pim-

lico.utils.progress), 125
DumpCmd (class in pimlico.cli.loaddump), 105

E
EmailCmd (class in pimlico.cli.testemail), 108
EmailConfig (class in pimlico.utils.email), 121
EmailError, 121
emptyline() (DataShell method), 103
encode() (StreamCommunicationPacket method), 120
execute() (MetadataCmd method), 103
execute() (PythonCmd method), 103
execute() (ShellCommand method), 102
extract_archive() (in module pim-

lico.utils.filesystem), 122
extract_from_archive() (in module pim-

lico.utils.filesystem), 122

F
finish() (LittleOutputtingProgressBar method), 126

fmt_frame_info() (in module pimlico.cli.debug),
102

format_execution_error() (in module pim-
lico.cli.util), 108

format_file_size() (in module pim-
lico.utils.filesystem), 122

format_option_type() (in module pim-
lico.core.modules.options), 116

from_local_config() (pim-
lico.utils.email.EmailConfig class method),
121

G
gateway_client_to_running_server() (in

module pimlico.core.external.java), 115
get() (OutputQueue method), 123
get_available() (OutputQueue method), 123
get_available_option() (Any method), 110
get_console_logger() (in module pim-

lico.utils.logging), 123
get_installation_candidate() (Any method),

110
get_installed_version() (PythonPackageDe-

pendency method), 112
get_installed_version() (PythonPackageOn-

Pip method), 113
get_installed_version() (SoftwareDependency

method), 110
get_log_file() (in module pimlico.core.logs), 117
get_names() (DataShell method), 103
get_nowait() (OutputQueue method), 123
get_open_progress_bar() (in module pim-

lico.utils.progress), 125
get_pipeline() (in module pimlico.cli.pyshell), 107
get_progress_bar() (in module pim-

lico.utils.progress), 125
get_redirect_func() (in module pim-

lico.core.external.java), 115
get_unused_local_port() (in module pim-

lico.utils.network), 123
get_unused_local_ports() (in module pim-

lico.utils.network), 123

H
help_text (MetadataCmd attribute), 103
help_text (PythonCmd attribute), 103
help_text (ShellCommand attribute), 102

I
import_member() (in module pimlico.utils.core), 120
import_package() (BeautifulSoupDependency

method), 113
import_package() (PythonPackageDependency

method), 112

154 Index

Pimlico Documentation, Release 0.9.23

increment() (SafeProgressBar method), 125
infinite_cycle() (in module pimlico.utils.core),

120
InputsCmd (class in pimlico.cli.locations), 105
install() (Any method), 110
install() (in module pim-

lico.core.dependencies.base), 111
install() (NLTKResource method), 113
install() (PythonPackageOnPip method), 113
install() (SoftwareDependency method), 110
install_core_dependencies() (in module pim-

lico), 128
install_dependencies() (in module pim-

lico.core.dependencies.base), 111
installable() (Any method), 110
installable() (NLTKResource method), 113
installable() (PythonPackageOnPip method), 113
installable() (PythonPackageSystemwideInstall

method), 112
installable() (SoftwareDependency method), 109
installable() (SystemCommandDependency

method), 111
installation_instructions() (PythonPack-

ageSystemwideInstall method), 112
installation_instructions() (SoftwareDe-

pendency method), 109
installation_notes() (Any method), 111
installation_notes() (SoftwareDependency

method), 109
InstallationError, 111
is_binary_file() (in module pim-

lico.cli.browser.tools.files), 101
is_binary_string() (in module pim-

lico.cli.browser.tools.files), 101
is_identifier() (in module pimlico.utils.core), 120

J
java_call_command() (in module pim-

lico.core.external.java), 114
JavaProcessError, 115
json_dict() (in module pim-

lico.core.modules.options), 117
json_string() (in module pim-

lico.core.modules.options), 116

L
launch_gateway() (in module pim-

lico.core.external.java), 115
launch_shell() (in module pim-

lico.cli.shell.runner), 104
length (StreamCommunicationPacket attribute), 120
limited_shuffle() (in module pim-

lico.utils.probability), 124

limited_shuffle_numpy() (in module pim-
lico.utils.probability), 124

ListDialogDisplay (class in pimlico.utils.urwid),
127

ListStoresCmd (class in pimlico.cli.locations), 106
LittleOutputtingProgressBar (class in pim-

lico.utils.progress), 125
LoadCmd (class in pimlico.cli.loaddump), 105

M
make_py4j_errors_safe() (in module pim-

lico.core.external.java), 115
make_table() (in module pimlico.utils.docs.rest), 119
MetadataCmd (class in pimlico.cli.shell.commands),

103
module_number_to_name() (in module pim-

lico.cli.util), 108
module_numbers_to_names() (in module pim-

lico.cli.util), 108
module_status() (in module pimlico.cli.status), 107
module_status_color() (in module pim-

lico.cli.status), 107
ModuleOptionParseError, 117
move_dir_with_progress() (in module pim-

lico.utils.filesystem), 122
MoveStoresCmd (class in pimlico.cli.locations), 106
msgbox() (in module pimlico.utils.urwid), 127
multiline_tablate() (in module pim-

lico.utils.format), 122
multiwith() (in module pimlico.utils.core), 120

N
new_client() (Py4JInterface method), 114
new_filename() (in module pimlico.utils.filesystem),

122
NewModuleCmd (class in pimlico.cli.newmodule), 106
NLTKResource (class in pim-

lico.core.dependencies.python), 113
no_retry_gateway() (in module pim-

lico.core.external.java), 115
NonOutputtingProgressBar (class in pim-

lico.utils.progress), 125
NonPTBTagError, 124
normalize_cell() (in module pim-

lico.utils.docs.rest), 119

O
on_exit() (DialogDisplay method), 127
on_exit() (ListDialogDisplay method), 127
opt_type_example() (in module pim-

lico.core.modules.options), 116
opt_type_help() (in module pim-

lico.core.modules.options), 116

Index 155

Pimlico Documentation, Release 0.9.23

options_dialog() (in module pimlico.utils.urwid),
127

output_p4j_error_info() (in module pim-
lico.core.external.java), 115

output_stack_trace() (in module pim-
lico.cli.debug), 102

OutputCmd (class in pimlico.cli.locations), 105
OutputConsumer (class in pim-

lico.core.external.java), 115
OutputQueue (class in pimlico.utils.pipes), 123

P
palette (DialogDisplay attribute), 127
pimlico (module), 128
pimlico.cfg (module), 127
pimlico.cli (module), 109
pimlico.cli.browser (module), 102
pimlico.cli.browser.tool (module), 102
pimlico.cli.browser.tools (module), 101
pimlico.cli.browser.tools.files (module),

101
pimlico.cli.clean (module), 104
pimlico.cli.debug (module), 102
pimlico.cli.loaddump (module), 105
pimlico.cli.locations (module), 105
pimlico.cli.newmodule (module), 106
pimlico.cli.pyshell (module), 106
pimlico.cli.reset (module), 107
pimlico.cli.shell (module), 104
pimlico.cli.shell.base (module), 102
pimlico.cli.shell.commands (module), 103
pimlico.cli.shell.runner (module), 104
pimlico.cli.status (module), 107
pimlico.cli.subcommands (module), 108
pimlico.cli.testemail (module), 108
pimlico.cli.util (module), 108
pimlico.core (module), 117
pimlico.core.dependencies (module), 114
pimlico.core.dependencies.base (module),

109
pimlico.core.dependencies.core (module),

111
pimlico.core.dependencies.python (mod-

ule), 112
pimlico.core.dependencies.versions (mod-

ule), 114
pimlico.core.external (module), 115
pimlico.core.external.java (module), 114
pimlico.core.logs (module), 117
pimlico.core.modules (module), 117
pimlico.core.modules.options (module), 116
pimlico.core.paths (module), 117
pimlico.modules (module), 43
pimlico.modules.candc (module), 43

pimlico.modules.corenlp (module), 43
pimlico.modules.corpora (module), 43
pimlico.modules.corpora.concat (module),

44
pimlico.modules.corpora.corpus_stats

(module), 44
pimlico.modules.corpora.format (module),

45
pimlico.modules.corpora.group (module), 46
pimlico.modules.corpora.interleave (mod-

ule), 48
pimlico.modules.corpora.list_filter

(module), 49
pimlico.modules.corpora.shuffle (module),

50
pimlico.modules.corpora.split (module), 51
pimlico.modules.corpora.store (module), 53
pimlico.modules.corpora.subset (module),

54
pimlico.modules.corpora.vocab_builder

(module), 55
pimlico.modules.corpora.vocab_counter

(module), 56
pimlico.modules.corpora.vocab_mapper

(module), 58
pimlico.modules.embeddings (module), 59
pimlico.modules.embeddings.dependencies

(module), 59
pimlico.modules.embeddings.store_embeddings

(module), 59
pimlico.modules.embeddings.store_tsv

(module), 60
pimlico.modules.embeddings.store_word2vec

(module), 61
pimlico.modules.embeddings.word2vec

(module), 62
pimlico.modules.features (module), 63
pimlico.modules.features.term_feature_compiler

(module), 63
pimlico.modules.features.term_feature_matrix_builder

(module), 63
pimlico.modules.features.vocab_builder

(module), 63
pimlico.modules.features.vocab_mapper

(module), 63
pimlico.modules.gensim (module), 63
pimlico.modules.gensim.lda (module), 63
pimlico.modules.gensim.lda_doc_topics

(module), 66
pimlico.modules.input (module), 67
pimlico.modules.input.embeddings (mod-

ule), 67
pimlico.modules.input.embeddings.fasttext

(module), 67

156 Index

Pimlico Documentation, Release 0.9.23

pimlico.modules.input.embeddings.fasttext_gensim
(module), 68

pimlico.modules.input.embeddings.glove
(module), 69

pimlico.modules.input.embeddings.word2vec
(module), 70

pimlico.modules.input.text (module), 71
pimlico.modules.input.text.raw_text_archives

(module), 71
pimlico.modules.input.text.raw_text_files

(module), 72
pimlico.modules.input.text_annotations

(module), 74
pimlico.modules.input.text_annotations.vrt_text

(module), 74
pimlico.modules.input.xml (module), 75
pimlico.modules.malt (module), 77
pimlico.modules.malt.conll_parser_input

(module), 77
pimlico.modules.malt.parse (module), 77
pimlico.modules.nltk (module), 77
pimlico.modules.nltk.nist_tokenize (mod-

ule), 77
pimlico.modules.opennlp (module), 78
pimlico.modules.opennlp.coreference

(module), 79
pimlico.modules.opennlp.coreference_pipeline

(module), 79
pimlico.modules.opennlp.ner (module), 79
pimlico.modules.opennlp.parse (module), 79
pimlico.modules.opennlp.pos (module), 79
pimlico.modules.opennlp.tokenize (mod-

ule), 79
pimlico.modules.output (module), 80
pimlico.modules.output.text_corpus (mod-

ule), 81
pimlico.modules.r (module), 82
pimlico.modules.r.script (module), 82
pimlico.modules.regex (module), 82
pimlico.modules.regex.annotated_text

(module), 82
pimlico.modules.sklearn (module), 82
pimlico.modules.sklearn.logistic_regression

(module), 82
pimlico.modules.sklearn.matrix_factorization

(module), 83
pimlico.modules.text (module), 83
pimlico.modules.text.char_tokenize (mod-

ule), 84
pimlico.modules.text.normalize (module),

84
pimlico.modules.text.simple_tokenize

(module), 86
pimlico.modules.text.text_normalize

(module), 87
pimlico.modules.utility (module), 88
pimlico.modules.utility.alias (module), 88
pimlico.modules.utility.collect_files

(module), 88
pimlico.modules.utility.copy_file (mod-

ule), 88
pimlico.modules.visualization (module), 88
pimlico.modules.visualization.bar_chart

(module), 88
pimlico.modules.visualization.embeddings_plot

(module), 89
pimlico.test (module), 119
pimlico.utils (module), 127
pimlico.utils.communicate (module), 119
pimlico.utils.core (module), 120
pimlico.utils.docs (module), 119
pimlico.utils.docs.rest (module), 119
pimlico.utils.email (module), 121
pimlico.utils.filesystem (module), 122
pimlico.utils.format (module), 122
pimlico.utils.linguistic (module), 123
pimlico.utils.logging (module), 123
pimlico.utils.network (module), 123
pimlico.utils.pipes (module), 123
pimlico.utils.pos (module), 124
pimlico.utils.probability (module), 124
pimlico.utils.progress (module), 125
pimlico.utils.strings (module), 126
pimlico.utils.system (module), 126
pimlico.utils.timeout (module), 126
pimlico.utils.urwid (module), 127
pimlico.utils.web (module), 127
PimlicoCLISubcommand (class in pim-

lico.cli.subcommands), 108
PimlicoPythonShellContext (class in pim-

lico.cli.pyshell), 106
pos_tag_to_ptb() (in module pimlico.utils.pos),

124
pos_tags_to_ptb() (in module pimlico.utils.pos),

124
postloop() (DataShell method), 103
preloop() (DataShell method), 103
print_execution_error() (in module pim-

lico.cli.util), 109
problems() (Any method), 110
problems() (NLTKResource method), 113
problems() (PythonPackageDependency method),

112
problems() (PythonPackageOnPip method), 113
problems() (SoftwareDependency method), 109
problems() (SystemCommandDependency method),

111

Index 157

Pimlico Documentation, Release 0.9.23

process_module_options() (in module pim-
lico.core.modules.options), 117

ProgressBarIter (class in pimlico.utils.progress),
126

prompt (DataShell attribute), 103
Py4JInterface (class in pimlico.core.external.java),

114
Py4JSafeJavaError, 115
PythonCmd (class in pimlico.cli.shell.commands), 103
PythonPackageDependency (class in pim-

lico.core.dependencies.python), 112
PythonPackageOnPip (class in pim-

lico.core.dependencies.python), 112
PythonPackageSystemwideInstall (class in

pimlico.core.dependencies.python), 112
PythonShellCmd (class in pimlico.cli.pyshell), 106

Q
qget() (in module pimlico.utils.pipes), 123

R
read() (DummyFileDescriptor method), 125
read() (StreamCommunicationPacket static method),

120
readLine() (DummyFileDescriptor method), 125
recursive_deps() (in module pim-

lico.core.dependencies.base), 111
remove_duplicates() (in module pim-

lico.utils.core), 120
remove_temporary_redirects() (OutputCon-

sumer method), 115
ResetCmd (class in pimlico.cli.reset), 107
retry_open() (in module pimlico.utils.filesystem),

122
run() (OutputConsumer method), 115
run_command() (CleanCmd method), 104
run_command() (DumpCmd method), 105
run_command() (EmailCmd method), 108
run_command() (InputsCmd method), 105
run_command() (ListStoresCmd method), 106
run_command() (LoadCmd method), 105
run_command() (MoveStoresCmd method), 106
run_command() (NewModuleCmd method), 106
run_command() (OutputCmd method), 106
run_command() (PimlicoCLISubcommand method),

108
run_command() (PythonShellCmd method), 107
run_command() (ResetCmd method), 107
run_command() (ShellCLICmd method), 104
run_command() (StatusCmd method), 107

S
safe_import_bs4() (in module pim-

lico.core.dependencies.python), 113

SafeProgressBar (class in pimlico.utils.progress),
125

send_pimlico_email() (in module pim-
lico.utils.email), 121

send_text_email() (in module pimlico.utils.email),
121

sequential_document_sample() (in module
pimlico.utils.probability), 124

sequential_sample() (in module pim-
lico.utils.probability), 124

set_proc_title() (in module pimlico.utils.system),
126

ShellCLICmd (class in pimlico.cli.shell.runner), 104
ShellCommand (class in pimlico.cli.shell.base), 102
ShellContextError, 107
ShellError, 103
similarities() (in module pimlico.utils.strings),

126
slice_progress() (in module pim-

lico.utils.progress), 126
SoftwareDependency (class in pim-

lico.core.dependencies.base), 109
SoftwareVersion (class in pim-

lico.core.dependencies.versions), 114
sorted_by_similarity() (in module pim-

lico.utils.strings), 126
split_seq() (in module pimlico.utils.core), 120
split_seq_after() (in module pimlico.utils.core),

120
start() (LittleOutputtingProgressBar method), 126
start() (Py4JInterface method), 114
start_java_process() (in module pim-

lico.core.external.java), 114
status_colored() (in module pimlico.cli.status),

107
StatusCmd (class in pimlico.cli.status), 107
stop() (Py4JInterface method), 114
str_to_bool() (in module pim-

lico.core.modules.options), 116
StreamCommunicationError, 120
StreamCommunicationPacket (class in pim-

lico.utils.communicate), 120
strip_punctuation() (in module pim-

lico.utils.linguistic), 123
subsample() (in module pimlico.utils.probability),

125
SystemCommandDependency (class in pim-

lico.core.dependencies.base), 111

T
table_div() (in module pimlico.utils.docs.rest), 119
terminate_process() (in module pim-

lico.utils.communicate), 119
timeout() (in module pimlico.utils.timeout), 126

158 Index

Pimlico Documentation, Release 0.9.23

timeout_process() (in module pim-
lico.utils.communicate), 119

title_box() (in module pimlico.utils.format), 122
trim_docstring() (in module pimlico.utils.docs),

119
truncate() (in module pimlico.utils.strings), 126

U
unhandled_key() (ListDialogDisplay method), 127
update() (SafeProgressBar method), 125

W
write() (DummyFileDescriptor method), 125

Y
yesno_dialog() (in module pimlico.utils.urwid), 127

Index 159

	Contents
	Python Module Index
	Index

