Pimlico Documentation
Release 0.8

Mark Granroth-Wilding

May 31, 2018

Contents

1 Contents 3

Python Module Index 185

Pimlico Documentation, Release 0.8

The Pimlico Processing Toolkit is a toolkit for building pipelines of tasks for processing large datasets (corpora).
It is especially focussed on processing linguistic corpora and provides wrappers around many existing, widely used
NLP (Natural Language Processing) tools.

It makes it easy to write large, potentially complex pipelines with the following key goals:
* to provide clear documentation of what has been done;
* to make it easy to incorporate standard NLP tasks,
¢ and to extend the code with non-standard tasks, specific to a pipeline;
* to support simple distribution of code for reproduction, for example, on other datasets.

The toolkit takes care of managing data between the steps of a pipeline and checking that everything’s executed in the
right order.

The core toolkit is written in Python. Pimlico is open source, released under the GPLv3 license. It is available from
its Github repository. To get started with a Pimlico project, follow the getting-started guide.

Pimlico is short for Plpelined Modular Linguistic COrpus processing.

More NLP tools will gradually be added. See my wishlist for current plans.

Contents 1

https://github.com/markgw/pimlico

Pimlico Documentation, Release 0.8

2 Contents

CHAPTER 1

Contents

1.1 Pimlico guides

Step-by-step guides through common tasks while using Pimlico.

1.1.1 Super-quick Pimlico setup

This is a very quick walk-through of the process of starting a new project using Pimlico. For more details, explanations,
etc see the longer getting-started guide.

First, make sure Python is installed.

System-wide configuration

Choose a location on your file system where Pimlico will store all the output from pipeline modules. For example,
/home/me/.pimlico_store/.

Create a file in your home directory called . pimlico that looks like this:

long_term_store=/home/me/.pimlico_store
short_term_store=/home/me/.pimlico_store

This is not specific to a pipeline: separate pipelines use separate subdirectories.

Set up new project

Create a new, empty directory to put your project in. E.g.:

cd ~
mkdir myproject

Download newproject.py into this directory and run it:

https://raw.githubusercontent.com/markgw/pimlico/master/admin/newproject.py

Pimlico Documentation, Release 0.8

wget https://raw.githubusercontent.com/markgw/pimlico/master/admin/newproject.py
python newproject.py myproject

This fetches the latest Pimlico codebase (in pimlico/) and creates a template pipeline (myproject.conf).

Customizing the pipeline

You’ve got a basic pipeline config file now (myproject.conf).

Add sections to it to configure modules that make up your pipeline.

For guides to doing that, see the the longer setup guide and individual module documentation.
Running Pimlico

Check the pipeline can be loaded and take a look at the list of modules you’ve configured:

’ ./pimlico.sh myproject.conf status

Tell the modules to fetch all the dependencies you need:

’./pimlico.sh myproject.conf install all

If there’s anything that can’t be installed automatically, this should output instructions for manual installation.

Check the pipeline’s ready to run a module that you want to run:

’./pimlico.sh myproject.conf run MODULE —--dry-run

To run the next unexecuted module in the list, use:

’./pimlico.sh myproject.conf run

1.1.2 Setting up a new project using Pimlico

You’ve decided to use Pimlico to implement a data processing pipeline. So, where do you start?

This guide steps through the basic setup of your project. You don’t have to do everything exactly as suggested here,
but it’s a good starting point and follows Pimlico’s recommended procedures. It steps through the setup for a very
basic pipeline.

System-wide configuration

Pimlico needs you to specify certain parameters regarding your local system. In the simplest case, this is just a file in
your home directory called .pimlico. See Local configuration for more details.

It needs to know where to put output files as it executes. Settings are given in a config file in your home directory and
apply to all Pimlico pipelines you run. Note that Pimlico will make sure that different pipelines don’t interfere with
each other’s output (provided you give them different names).

There are two locations you need to specify: short-term and long-term storage. For more details, see Long-term and
short-term stores.

For a simple setup, these could be just two subdirectories of the same directory. However, it can be useful to distinguish
them.

4 Chapter 1. Contents

Pimlico Documentation, Release 0.8

Create a file ~/ . pimlico that looks like this:

long_term_store=/path/to/long-term/store
short_term_store=/path/to/short-term/store

Remember, these paths are not specific to a pipeline: all pipelines will use different subdirectories of these ones.

Getting started with Pimlico

The procedure for starting a new Pimlico project, using the latest release, is very simple.
Create a new, empty directory to put your project in. Download newproject.py into the project directory.

Choose a name for your project (e.g. myproject) and run:

python newproject.py myproject

This fetches the latest version of Pimlico (now in the pimlico/ directory) and creates a basic config file template,
which will define your pipeline.

It also retrieves some libraries that Pimlico needs to run. Other libraries required by specific pipeline modules will be
installed as necessary when you use the modules.

Building the pipeline

You’ve now got a config file in myproject.conf. This already includes a pipeline section, which gives the
basic pipeline setup. It will look something like this:

[pipeline]

name=myproject

release=<release number>

python_path=% (project_root)s/src/python

The name needs to be distinct from any other pipelines that you run – it’s what distinguishes the storage
locations.

release is the release of Pimlico that you're using: it’s automatically set to the latest one, which has been down-
loaded.

If you later try running the same pipeline with an updated version of Pimlico, it will work fine as long as it’s the same
major version (the first digit). Otherwise, there may be backwards incompatible changes, so you’d need to update your
config file, ensuring it plays nicely with the later Pimlico version.

Getting input

Now we add our first module to the pipeline. This reads input from XML files and iterates of <doc> tags to get
documents. This is how the Gigaword corpus is stored, so if you have Gigaword, just set the path to point to it.

Todo: Use a dataset that everyone can get to in the example

[input-text]
type=pimlico.datatypes.XmlDocumentIterator
path=/path/to/data/dir

1.1. Pimlico guides 5

https://raw.githubusercontent.com/markgw/pimlico/master/admin/newproject.py

Pimlico Documentation, Release 0.8

Perhaps your corpus is very large and you’d rather try out your pipeline on a small subset. In that case, add the
following option:

truncate=1000

Note: For a neat way to define a small test version of your pipeline and keep its output separate from the main
pipeline, see Pipeline variants.

Grouping files

The standard approach to storing data between modules in Pimlico is to group them together into batches of documents,
storing each batch in a tar archive, containing a file for every document. This works nicely with large corpora, where
having every document as a separate file would cause filesystem difficulties and having all documents in the same file
would result in a frustratingly large file.

We can do the grouping on the fly as we read data from the input corpus. The tar_filter module groups documents
together and subsequent modules will all use the same grouping to store their output, making it easy to align the
datasets they produce.

[tar—grouper]
type=pimlico.modules.corpora.tar_filter
input=input-text

Doing something: tokenization

Now, some actual linguistic processing, albeit somewhat uninteresting. Many NLP tools assume that their input has
been divided into sentences and tokenized. The OpenNLP-based tokenization module does both of these things at
once, calling OpenNLP tools.

Notice that the output from the previous module feeds into the input for this one, which we specify simply by naming
the module.

[tokenize]
type=pimlico.modules.opennlp.tokenize
input=tar—-grouper

Doing something more interesting: POS tagging

Many NLP tools rely on part-of-speech (POS) tagging. Again, we use OpenNLP, and a standard Pimlico module
wraps the OpenNLP tool.

[pos-tag]
type=pimlico.modules.opennlp.pos
input=tokenize

Running Pimlico

Now we’ve got our basic config file ready to go. It’s a simple linear pipeline that goes like this:

read input docs -> group into batches -> tokenize -> POS tag

6 Chapter 1. Contents

Pimlico Documentation, Release 0.8

Before we can run it, there’s one thing missing: three of these modules have their own dependencies, so we need to
get hold of the libraries they use. The input reader uses the Beautiful Soup python library and the tokenization and
POS tagging modules use OpenNLP.

Checking everything’s dandy

Now you can run the status command to check that the pipeline can be loaded and see the list of modules.

’./pimlico.sh myproject.conf status

To check that specific modules are ready to run, with all software dependencies installed, use the run command with
——dry-run (or ——dry) switch:

’./pimlico.sh myproject.conf run tokenize —--dry

With any luck, all the checks will be successful. There might be some missing software dependencies.

Fetching dependencies

All the standard modules provide easy ways to get hold of their dependencies automatically, or as close as possible.
Most of the time, all you need to do is tell Pimlico to install them.

Use the run command, with a module name and ——dry—-run, to check whether a module is ready to run.

’./pimlico.sh myproject.conf run tokenize —--dry

In this case, it will tell you that some libraries are missing, but they can be installed automatically. Simply issue the
install command for the module.

’./pimlico.sh myproject.conf install tokenize

Simple as that.

There’s one more thing to do: the tools we’re using require statistical models. We can simply download the pre-trained
English models from the OpenNLP website.

At present, Pimlico doesn’t yet provide a built-in way for the modules to do this, as it does with software libraries, but
it does include a GNU Makefile to make it easy to do:

cd ~/myproject/pimlico/models
make opennlp

Note that the modules we’re using default to these standard, pre-trained models, which you’re now in a position to use.
However, if you want to use different models, e.g. for other languages or domains, you can specify them using extra
options in the module definition in your config file.

If there are any other library problems shown up by the dry run, you’ll need to address them before going any further.
Running the pipeline
What modules to run?

Pimlico suggests an order in which to run your modules. In our case, this is pretty obvious, seeing as our pipeline is
entirely linear — it’s clear which ones need to be run before others.

1.1. Pimlico guides 7

Pimlico Documentation, Release 0.8

./pimlico.sh myproject.conf status

The output also tells you the current status of each module. At the moment, all the modules are UNEXECUTED.

You’ll notice that the tar-grouper module doesn’t feature in the list. This is because it’s a filter — it’s run on the
fly while reading output from the previous module (i.e. the input), so doesn’t have anything to run itself.

You might be surprised to see that input—text does feature in the list. This is because, although it just reads the
data out of a corpus on disk, there’s not quite enough information in the corpus, so we need to run the module to collect
a little bit of metadata from an initial pass over the corpus. Some input types need this, others not. In this case, all
we’re lacking is a count of the total number of documents in the corpus.

Note: To make running your pipeline even simpler, you can abbreviate the command by using a shebang in the config
file. Add a line at the top of myproject . conf like this:

’#]./pimlico.sh

Then make the conf file executable by running (on Linux):

’chmod ug+x myproject.conf

Now you can run Pimlico for your pipeline by using the config file as an executable command:

’./myproject.conf status

Running the modules

The modules can be run using the run command and specifying the module by name. We do this manually for each
module.

./pimlico.sh myproject.conf run input-text
./pimlico.sh myproject.conf run tokenize
./pimlico.sh myproject.conf run pos-tag

Adding custom modules

Most likely, for your project you need to do some processing not covered by the built-in Pimlico modules. At this
point, you can start implementing your own modules, which you can distribute along with the config file so that people
can replicate what you did.

The newproject . py script has already created a directory where our custom source code will live: src/python,
with some subdirectories according to the standard code layout, with module types and datatypes in separate packages.

The template pipeline also already has an option python_path pointing to this directory, so that Pimlico knows
where to find your code. Note that the code’s in a subdirectory of that containing the pipeline config and we specify
the custom code path relative to the config file, so it’s easy to distribute the two together.

Now you can create Python modules or packages in src/python, following the same conventions as the built-in
modules and overriding the standard base classes, as they do. The following articles tell you more about how to do
this:

» Writing Pimlico modules

» Writing document map modules

8 Chapter 1. Contents

Pimlico Documentation, Release 0.8

e Pimlico module structure

Your custom modules and datatypes can then simply be used in the config file as module types.

1.1.3 Writing Pimlico modules

Pimlico comes with a fairly large number of module types that you can use to run many standard NLP, data
processing and ML tools over your datasets.

For some projects, this is all you need to do. However, often you’ll want to mix standard tools with your own code,
for example, using the output from the tools. And, of course, there are many more tools you might want to run that
aren’t built into Pimlico: you can still benefit from Pimlico’s framework for data handling, config files and so on.

For a detailed description of the structure of a Pimlico module, see Pimlico module structure. This guide takes you
through building a simple module.

Note: In any case where a module will process a corpus one document at a time, you should write a document map
module, which takes care of a lot of things for you, so you only need to say what to do with each document.

Code layout

If you’ve followed the basic project setup guide, you’ll have a project with a directory structure like this:

myproject/
pipeline.conf
pimlico/
bin/
1lib/
src/

src/
python/

If you’ve not already created the src/python directory, do that now.

This is where your custom Python code will live. You can put all of your custom module types and datatypes in there
and use them in the same way as you use the Pimlico core modules and datatypes.

Add this option to the [pipeline] section of your config file, so Pimlico knows where to find your code:

python_path=src/python

To follow the conventions used in Pimlico’s codebase, we’ll create the following package structure in src/python:

src/python/myproject/

__init__ .py

modules/
__init__.py

datatypes/
__init_ .py

1.1. Pimlico guides 9

Pimlico Documentation, Release 0.8

Write a module
A Pimlico module consists of a Python package with a special layout. Every module has a file info.py. This
contains the definition of the module’s metadata: its inputs, outputs, options, etc.

Most modules also have a file execute . py, which defines the routine that’s called when it’s run. You should take
care when writing info.py not to import any non-standard Python libraries or have any time-consuming operations
that get run when it gets imported.

execute.py, on the other hand, will only get imported when the module is to be run, after dependency checks.

For the example below, let’s assume we’re writing a module called nmf and create the following directory structure
for it:

src/python/myproject/modules/
__init__ .py
nmf/
__init__ .py
info.py
execute.py

Easy start

To help you get started, Pimlico provides a wizard in the newmodule command.

This will ask you a series of questions, guiding you through the most common tasks in creating a new module. At the
end, it will generate a template to get you started with your module’s code. You then just need to fill in the gaps and
write the code for what the module actually does.

Read on to learn more about the structure of modules, including things not covered by the wizard.

Metadata

Module metadata (everything apart from what happens when it’s actually run) is defined in info . py as a class called
ModuleInfo.

Here’s a sample basic ModuleInfo, which we’ll step through. (I’s based on the Scikit-learn
matrix_factorization module.)

from pimlico.core.dependencies.python import PythonPackageOnPip
from pimlico.core.modules.base import BaseModulelInfo
from pimlico.datatypes.arrays import ScipySparseMatrix, NumpyArray

class ModuleInfo (BaseModuleInfo) :

module_type_name = "nmf"
module_readable_name = "Sklearn non-negative matrix factorization"
module_inputs = [("matrix", ScipySparseMatrix)]
module_outputs = [("w", NumpyArray), ("h", NumpyArray)]
module_options = {
"components": {
"help": "Number of components to use for hidden representation",

"type": int,
"default": 200,
br

(continues on next page)

10 Chapter 1. Contents

Pimlico Documentation, Release 0.8

(continued from previous page)

def get_software_dependencies (self):
return super (ModuleInfo, self).get_software_dependencies () + \
[PythonPackageOnPip ("sklearn", "Scikit-learn")]

The ModuleInfo should always be a subclass of BaseModuleInfo. There are some subclasses that you might
want to use instead (e.g., see Writing document map modules), but here we just use the basic one.

Certain class-level attributes should pretty much always be overridden:
* module_type_name: A name used to identify the module internally
* module_readable_name: A human-readable short description of the module
* module_inputs: Most modules need to take input from another module (though not all)

* module_outputs: Describes the outputs that the module will produce, which may then be used as inputs to
another module

Inputs are given as pairs (name, type), where name is a short name to identify the input and t ype is the datatype
that the input is expected to have. Here, and most commonly, this is a subclass of PimlicoDatatype and Pimlico
will check that a dataset supplied for this input is either of this type, or has a type that is a subclass of this.

Here we take just a single input: a sparse matrix.

Qutputs are given in a similar way. It is up to the module’s executor (see below) to ensure that these outputs get
written, but here we describe the datatypes that will be produced, so that we can use them as input to other modules.

Here we produce two Numpy arrays, the factorization of the input matrix.

Dependencies: Since we require Scikit-learn to execute this module, we override
get_software_dependencies () to specify this. As Scikit-learn is available through Pip, this is very
easy: all we need to do is specify the Pip package name. Pimlico will check that Scikit-learn is installed before
executing the module and, if not, allow it to be installed automatically.

Finally, we also define some options. The values for these can be specified in the pipeline config file. When
the ModuleInfo is instantiated, the processed options will be available in its options attribute. So, for ex-
ample, we can get the number of components (specified in the config file, or the default of 200) using info.
options["components"].

Executor

Here is a sample executor for the module info given above, placed in the file execute.py.

from pimlico.core.modules.base import BaseModuleExecutor
from pimlico.datatypes.arrays import NumpyArrayWriter
from sklearn.decomposition import NMF

class ModuleExecutor (BaseModuleExecutor) :
def execute(self):
input_matrix = self.info.get_input ("matrix") .array

)

self.log.info ("Loaded input matrix: " % str(input_matrix.shape))

Convert input matrix to CSR

input_matrix = input_matrix.tocsr ()

Initialize the transformation

components = self.info.options["components"]
self.log.info("Initializing NMF with components" % components)

(continues on next page)

1.1. Pimlico guides 11

Pimlico Documentation, Release 0.8

(continued from previous page)

nmf = NMF (components)

Apply transformation to the matrix
self.log.info ("Fitting NMF transformation on input matrix" % transform_type)
transformed_matrix = transformer.fit_transform(input_matrix)

self.log.info ("Fitting complete: storing H and W matrices")

Use built-in Numpy array writers to output results in an appropriate format

with NumpyArrayWriter (self.info.get_absolute_output_dir("w")) as w_writer:
w_writer.set_array(transformed_matrix)

with NumpyArrayWriter (self.info.get_absolute_output_dir("h")) as h_writer:
h_writer.set_array (transformer.components_)

The executor is always defined as a class in execute . py called ModuleExecutor. It should always be a subclass
of BaseModuleExecutor (though, again, note that there are more specific subclasses and class factories that we
might want to use in other circumstances).

The execute () method defines what happens when the module is executed.

The instance of the module’s ModuleInfo, complete with options from the pipeline config, is available as self.
info. A standard Python logger is also available, as self.log, and should be used to keep the user updated on
what’s going on.

Getting hold of the input data is done through the module info’s get_input () method. In the case of a Scipy
matrix, here, it just provides us with the matrix as an attribute.

Then we do whatever our module is designed to do. At the end, we write the output data to the appropriate output
directory. This should always be obtained using the get_absolute_output_dir () method of the module info,
since Pimlico takes care of the exact location for you.

Most Pimlico datatypes provide a corresponding writer, ensuring that the output is written in the correct format for it
to be read by the datatype’s reader. When we leave the with block, in which we give the writer the data it needs, this
output is written to disk.

Pipeline config

Our module is now ready to use and we can refer to it in a pipeline config file. We’ll assume we’ve prepared a suitable
Scipy sparse matrix earlier in the pipeline, available as the default output of a module called mat rix. Then we can
add section like this to use our new module:

[matrix]
... (Produces sparse matrix output) ...

[factorize]
type=myproject.modules.nmf
components=300
input=matrix

Note that, since there’s only one input, we don’t need to give its name. If we had defined multiple inputs, we’d need
to specify this one as input_matrix=matrix.

You can now run the module as part of your pipeline in the usual ways.

Skeleton new module

To make developing a new module a little quicker, here’s a skeleton module info and executor.

12 Chapter 1. Contents

Pimlico Documentation, Release 0.8

from pimlico.core.modules.base import BaseModuleInfo

class ModuleInfo (BaseModuleInfo) :

module_type_name = "NAME"
module_readable_name = "READABLE NAME"
module_inputs = [("NAME", REQUIRED_TYPE)]
module_outputs = [("NAME", PRODUCED_TYPE)]
Delete module options if you don't need any
module_options = {

"OPTION_NAME": {

"help": "DESCRIPTION",

"type": TYPE,
"default": VALUE,
s

def get_software_dependencies (self):
return super (ModuleInfo, self) .get_software_dependencies() + [
Add your own dependencies to this list
Remove this method if you don't need to add any

from pimlico.core.modules.base import BaseModuleExecutor

class ModuleExecutor (BaseModuleExecutor) :
def execute(self):
input_data = self.info.get_input ("NAME")
self.log.info ("MESSAGES")

DO STUFF

with SOME_WRITER (self.info.get_absolute_output_dir ("NAME")) as writer:
Do what the writer requires

1.1.4 Writing document map modules

Todo: Write a guide to building document map modules.

For now, the skeletons below are a useful starting point, but there should be a more fulsome explanation here of what
document map modules are all about and how to use them.

Skeleton new module

To make developing a new module a little quicker, here’s a skeleton module info and executor for a document map
module. It follows the most common method for defining the executor, which is to use the multiprocessing-based
executor factory.

from pimlico.core.modules.map import DocumentMapModuleInfo
from pimlico.datatypes.tar import TarredCorpusType

class ModuleInfo (DocumentMapModuleInfo) :
module_type_name = "NAME"

(continues on next page)

1.1. Pimlico guides 13

Pimlico Documentation, Release 0.8

(continued from previous page)

module_readable_name = "READABLE NAME"
module_inputs = [("NAME", TarredCorpusType (DOCUMENT_TYPE))]
module_outputs = [("NAME", PRODUCED_TYPE)]
module_options = {
"OPTION_NAME": {
"help": "DESCRIPTION",

"type": TYPE,
"default": VALUE,
by

def get_software_dependencies (self):
return super (ModulelInfo, self).get_software_dependencies() + [
Add your own dependencies to this 1list

def get_writer(self, output_name, output_dir, append=False):
if output_name == "NAME":
Instantiate a writer for this output, using the given output dir
and passing append in as a kwarg
return WRITER_CLASS (output_dir, append=append)

A bare-bones executor:

from pimlico.core.modules.map.multiproc import multiprocessing_executor_factory

def process_document (worker, archive_name, doc_name, =xdata):
Do something to process the document...
Return an object to send to the writer

return output

ModuleExecutor = multiprocessing_executor_factory (process_document)

Or getting slightly more sophisticated:

from pimlico.core.modules.map.multiproc import multiprocessing_executor_factory
def process_document (worker, archive_name, doc_name, =xdata):

Do something to process the document

Return a tuple of objects to send to each writer

If you only defined a single output, you can just return a single object
return outputl, output2,

You don't have to, but you can also define pre- and postprocessing
both at the executor level and worker level
def preprocess (executor) :

pass

def postprocess (executor, error=None):

(continues on next page)

14 Chapter 1. Contents

Pimlico Documentation, Release 0.8

(continued from previous page)

pass

def set_up_worker (worker) :
pass

def tear_down_worker (worker, error=None) :
pass

ModuleExecutor = multiprocessing_executor_factory(
process_document,
preprocess_fn=preprocess, postprocess_fn=postprocess,
worker_set_up_fn=set_up_worker, worker_tear_down_fn=tear_down_worker,

1.1.5 Filter modules
Filter modules appear in pipeline config, but never get executed directly, instead producing their output on the fly when
it is needed.
There are two types of filter modules in Pimlico:
e All document map modules can be used as filters.

¢ Other modules may be defined in such a way that they always function as filters.

Using document map modules as filters

See this guide for how to create document map modules, which process each document in an input iterable corpus,
producing one document in the output corpus for each. Many of the core Pimlico modules are document map modules.

Any document map module can be used as a filter simply by specifying £ilter=True inits options. It will then not
appear in the module execution schedule (output by the status command), but will get executed on the fly by any
module that uses its output. It will be initialized when the downstream module starts accessing the output, and then
the single-document processing routine will be run on each document to produce the corresponding output document
as the downstream module iterates over the corpus.

It is possible to chain together filter modules in sequence.

Other filter modules

A module can be defined so that it always functions as a filter by setting module_executable=False on its
module-info class. Pimlico will assume that its outputs are ready as soon as its inputs are ready and will not try to
execute it. The module developer must ensure that the outputs get produced when necessary.

This form of filter is typically appropriate for very simple transformations of data. For example, it might perform
a simple conversion of one datatype into another to allow the output of a module to be used as if it had a different
datatype. However, it is possible to do more sophisticated processing in a filter module, though the implementation is
a little more tricky (tar_ filter is an example of this).

1.1. Pimlico guides 15

Pimlico Documentation, Release 0.8

Defining

Define a filter module something like this:

class ModuleInfo (BaseModuleInfo) :

module_type_name = "my_module_name"

module_executable = False # This 1is the crucial instruction to treat this as a_
—~filter

module_inputs = [] # Define inputs

module_outputs = [] # Define at least one output, which we'll produce as_
—needed

module_options = {} # Any options you need

def instantiate_output_datatype(self, output_name, output_datatype, =**kwargs):
Here we produce the desired output datatype,
using the inputs acquired from self.get_input (name)
return MyOutputDatatype ()

You don’t need to create an execute . py, since it’s not executable, so Pimlico will not try to load a module executor.
Any processing you need to do should be put inside the datatype, so that it’s performed when the datatype is used
(e.g. when iterating over it), but not when instatiate_output_datatype () is called or when the datatype is
instantiated, as these happen every time the pipeline is loaded.

A trick that can be useful to wrap up functionality in a filter datatype is to define a new datatype that does the necessary
processing on the fly and to set its class attribute emulated_datatype to point to a datatype class that should be
used instead for the purposes of type checking. The built-in tar_ £i1ter module uses this trick.

Either way, you should take care with imports. Remember that the execute.py of executable modules is only
imported when a module is to be run, meaning that we can load the pipeline config without importing any dependencies
needed to run the module. If you put processing in a specially defined datatype class that has dependencies, make sure
that they’re not imported at the top of info. py, but only when the datatype is used.

1.1.6 Multistage modules

Multistage modules are used to encapsulate a module than is executed in several consecutive runs. You can think
of each stage as being its own module, but where the whole sequence of modules is always executed together. The
multistage module simply chains together these individual modules so that you only include a single module instance
in your pipeline definition.

One common example of a use case for multistage modules is where some fairly time-consuming preprocessing needs
to be done on an input dataset. If you put all of the processing into a single module, you can end up in an irritating
situation where the lengthy data preprocessing succeeds, but something goes wrong in the main execution code. You
then fix the problem and have to run all the preprocessing again.

Most obvious solution to this is to separate the preprocessing and main execution into two separate modules. But then,
if you want to reuse you module sometime in the future, you have to remember to always put the preprocessing module
before the main one in your pipeline (or infer this from the datatypes!). And if you have more than these two modules
(say, a sequence of several, or preprocessing of several inputs) this starts to make pipeline development frustrating.

A multistage module groups these internal modules into one logical unit, allowing them to be used together by includ-
ing a single module instance and also to share parameters.

16 Chapter 1. Contents

Pimlico Documentation, Release 0.8

Defining a multistage module

Component stages

The first step in defining a multistage module is to define its individual stages. These are actually defined in exactly
the same way as normal modules. (This means that they can also be used separately.)

If you’re writing these modules specifically to provide the stages of your multistage module (rather than tying together
already existing modules for convenience), you probably want to put them all in subpackages.

For an ordinary module, we used the directory structure:

src/python/myproject/modules/
__init__ .py
mymodule/
__init__ .py
info.py
execute.py

Now, we’ll use something like this:

src/python/myproject/modules/
__init__ .py
my_ms_module/
__init___.py
info.py
modulel/
__init__ .py
info.py
execute.py
module2/
__init__.py
info.py
execute.py

Note that modulel and module?2 both have the typical structure of a module definition: an info.py to define the
module-info, and an execute.py to define the executor. At the top level, we’ve just got an info.py. It’s in here
that we’ll define the multistage module. We don’t need an execute . py for that, since it just ties together the other
modules, using their executors at execution time.

Multistage module-info

With our component modules that constitute the stages defined, we now just need to tie them together. We do this by
defining a module-info for the multistage module in its info.py. Instead of subclassing BaseModuleInfo, as
usual, we create the ModuleInfo class using the factory function multistage module ().

ModuleInfo = multistage_module ("module_name",

[
Stages to be defined here...

In other respects, this module-info works in the same way as usual: it’s a class (return by the factory) called
ModuleInfointhe info.py.

multistage_module () takes two arguments: a module name (equivalent to the module_name attribute of a
normal module-info) and a list of instances of ModuleStage.

1.1. Pimlico guides 17

Pimlico Documentation, Release 0.8

Connecting inputs and outputs

Connections between the outputs and inputs of the stages work in a very similar way to connections between module
instances in a pipeline. The same type checking system is employed and data is passed between the stages (i.e. between
consecutive executions) as if the stages were separate modules.

Each stage is defined as an instance of ModuleStage:

[
ModuleStage ("stage_name", TheModuleInfoClass, connections=[...], output_
—connections=[...])

]

The parameter connections defines how the stage’s inputs are connected up to either the outputs of previous
stages or inputs to the multistage module. Just like in pipeline config files, if no explicit input connections are given,
the default input to a stage is connected to the default output from the previous one in the list.

There are two classes you can use to define input connections.
InternalModuleConnection This makes an explicit connection to the output of another stage.

You must specify the name of the input (to this stage) that you’re connecting. You may specify the name of the
output to connect it to (defaults to the default output). You may also give the name of the stage that the output
comes from (defaults to the previous one).

[

ModuleStage ("stagel", FirstInfo),

FirstInfo has an output called "corpus", which we connect explicitly to the,
—next stage

We could leave out the "corpus" here, if it's the default output from,
—FirstInfo

ModuleStage ("stage2", SecondInfo, connections=[InternalModuleConnection ("data
", "corpus")]),

We connect the same output from stagel to stagel

ModuleStage ("stage3", ThirdInfo, connections=[InternalModuleConnection ("data",
« "corpus", "stagel")1]),

]

ModuleInputConnection: This makes a connection to an input to the whole multistage module.

Note that you don’t have to explicitly define the multistage module’s inputs anywhere: you just mark certain
inputs to certain stages as coming from outside the multistage module, using this class.

[
ModuleStage ("stagel", FirstInfo, [ModuleInputConnection ("raw_data"™)]1),
ModuleStage ("stage2", SecondInfo, [InternalModuleConnection("data", "corpus
—=")1),
ModuleStage ("stage3", ThirdInfo, [InternalModuleConnection ("data", "corpus",
—"stagel")]),
]

Here, the module type FirstInfo has an input called raw_data. We’ve specified that this needs to come
in directly as an input to the multistage module — when we use the multistage module in a pipeline, it must be
connected up with some earlier module.

The multistage module’s input created by doing this will also have the name raw_data (specified using a
parameter input_raw_data in the config file). You can override this, if you want to use a different name:

18 Chapter 1. Contents

Pimlico Documentation, Release 0.8

ModuleStage ("stagel", FirstInfo, [ModuleInputConnection ("raw_data", "data
=")1),

ModuleStage ("stage2", SecondInfo, [InternalModuleConnection ("data", "corpus
=")1),

ModuleStage ("stage3", ThirdInfo, [InternalModuleConnection ("data", "corpus",

—"stagel™) 1),
]

This would be necessary if two stages both had inputs called raw_data, which you want to come from different
data sources. You would then simply connect them to different inputs to the multistage module:

[

ModuleStage ("stagel", FirstInfo, [ModuleInputConnection ("raw_data", "first_
—data")]),

ModuleStage ("stage2", SecondInfo, [ModuleInputConnection("raw_data", "second_
—data")]),

ModuleStage ("stage3", ThirdInfo, [InternalModuleConnection ("data", "corpus",

—"stagel")]),
]

Conversely, you might deliberately connect the inputs from two stages to the same input to the multistage
module, by using the same multistage input name twice. (Of course, the two stages are not required to have
overlapping input names for this to work.) This will result in the multistage just requiring one input, which get
used by both stages.

[
ModuleStage ("stagel", FirstInfo,
[ModuleInputConnection ("raw_data", "first_data"), .
—ModuleInputConnection ("dict", "vocab")]l),
ModuleStage ("stage2", SecondInfo,
[ModuleInputConnection ("raw_data", "second_data"), .
—ModuleInputConnection ("vocabulary", "vocab")]),
ModuleStage ("stage3", ThirdInfo, [InternalModuleConnection ("data", "corpus",
—"stagel") 1),
]

By default, the multistage module has just a single output: the default output of the last stage in the list. You
can specify any of the outputs of any of the stages to be provided as an output to the multistage module. Use the
output_connections parameter when defining the stage.

This parameter should be a list of instances of ModuleOutputConnection. Just like with input connections, if
you don’t specify otherwise, the multistage module’s output will have the same name as the output from the stage
module. But you can override this when giving the output connection.

[
ModuleStage ("stagel", FirstInfo, [ModulelInputConnection("raw_data", "first_data

=")1),
ModuleStage ("stage2", SecondInfo, [ModuleInputConnection("raw_data", "second_data

=")1,
output_connections=[ModuleOutputConnection ("model")]), # This,_,
—output will just be called "model"
ModuleStage ("stage3", ThirdInfo, [InternalModuleConnection ("data", "corpus",
—"stagel"),

output_connections=[ModuleOutputConnection ("model", "stage3_model")]),

1.1. Pimlico guides 19

Pimlico Documentation, Release 0.8

Module options

The parameters of the multistage module that can be specified when it is used in a pipeline config (those usually
defined in the module_options attribute) include all of the options to all of the stages. The option names are
simply <stage_name>_<option_name>.

So, in the above example, if FirstInfo has an option called threshold, the multistage module will have an
option stagel_threshold, which gets passed through to stagel when it is run.

Often you might wish to specify one parameter to the multistage module that gets used by several stages. Say stage?2
had a cutoff parameter and we always wanted to use the same value as the threshold for stagel. Instead
of having to specify stagel_threshold and stage2_cutoff every time in your config file, you can assign
a single name to an option (say threshold) for the multistage module, whose value gets passed through to the
appropriate options of the stages.

Do this by specifying a dictionary as the option_connections parameter to ModuleStage, whose keys are
names of the stage module type’s options and whose values are the new option names for the multistage module that
you want to map to those stage options. You can use the same multistage module option name multiple times, which
will cause only a single option to be added to the multistage module (using the definition from the first stage), which
gets mapped to multiple stage options.

To implement that above example, you would give:

[
ModuleStage ("stagel", FirstInfo, [ModulelInputConnection("raw_data", "first_data
=")1,
option_connections={"threshold": "threshold"}),
ModuleStage ("stage2", SecondInfo, [ModulelInputConnection ("raw_data", "second data
=")1,
[ModuleOutputConnection ("model")],
option_connections={"cutoff": "threshold"}),
ModuleStage ("stage3", ThirdInfo, [InternalModuleConnection ("data", "corpus",
—"stagel"),
[ModuleOutputConnection ("model", "stage3_model")]),

If you know that the different stages have distinct option name, or that they should always tie their values together
where their option names overlap, you can set use_stage_option_names=True on the stages. This will cause
the stage-name prefix not to be added to the option name when connecting it to the multistage module’s option.

You can also force this behaviour for all stages by setting use_stage_option_names=True when you call
multistage_module (). Any explicit option name mappings you provide via option_connections will
override this.

Running

To run a multistage module once you’ve used it in your pipeline config, you run one stage at a time, as if they were
separate module instances.

Say we’ve used the above multistage module in a pipeline like so:

[model_train]
type=myproject.modules.my_ms_module
stagel_threshold=10
stage2_cutoff=10

The normal way to run this module would be to use the run command with the module name:

20 Chapter 1. Contents

Pimlico Documentation, Release 0.8

./pimlico.sh mypipeline.conf run model_train

If we do this, Pimlico will choose the next unexecuted stage that’s ready to run (presumably stagel at this point).
Once that’s done, you can run the same command again to execute stage2.

You can also select a specific stage to execute by using the module name <ms_module_name>:<stage_name>,
e.g. model_train:stage?2. (Note that stage2 doesn’t actually depend on stagel, so it’s perfectly plausible
that we might want to execute them in a different order.)

If you want to execute multiple stages at once, just use this scheme to specify each of them as a module name for the
run command. Remember, Pimlico can take any number of modules and execute them in sequence:

’./pimlico.sh mypipeline.conf run model_train:stagel model_train:stage2

Or, if you want to execute all of them, you can use the stage name » or all as a shorthand:

’./pimlico.sh mypipeline.conf run model_train:all

Finally, if you’re not sure what stages a multistage module has, use the module name <ms_module_name>: ?. The
run command will then just output a list of stages and exit.

1.1.7 Running one pipeline on multiple computers

Multiple servers

In most of the examples, we’ve been setting up a pipeline, with a config file, some source code and some data, all on
one machine. Then we run each module in turn, checking that it has all the software and data that it needs to run.

But it’s not unusual to find yourself needing to process a dataset across different computers. For example, you have
access to a server with lots of CPUs and one module in your pipeline would benefit greatly from parallelizing lots of
little tasks over them. However, you don’t have permission to install software on that server that you need for another
module.

This is not a problem: you can simply put your config file and code on both machines. After running one module on
one machine, you copy over its output to the place on the other machine where Pimlico expects to find it. Then you’re
ready to run the next module on the second machine.

Pimlico is designed to handle this situation nicely.

« It doesn’t expect software requirements for all modules to be satisfied before you can run any of them.
Software dependencies are checked only for modules about to be run and the code used to execute a module is
not even loaded until you actually run the module.

* It doesn’t require you to execute your pipeline in order. If the output from a module is available where it’s
expected to be, you can happily run any modules that take that data as input, even if the pipeline up to that point
doesn’t appear to have been executed (e.g. if it’s been run on another machine).

« It provides you with tools to make it easier to copy data between machines. You can easily copy the output
data from one module to the appropriate location on another server, so it’s ready to be used as input to another
module there.

Copying data between computers

Let’s assume you’ve got your pipeline set up, with identical config files, on two computers: server_a and
server_b. You’ve run the first module in your pipeline, modulel, on server_a and want to run the next,
module2, which takes input from modulel, on server_b.

1.1. Pimlico guides 21

Pimlico Documentation, Release 0.8

The procedure is as follows:
* Dump the data from the pipeline on server_a. This packages up the output data for a module in a single file.
* Copy the dumped file from server_a to server_b, in whatever way is most convenient, e.g., using scp.

* Load the dumped file into the pipeline on server_b. This unpacks the data directory for the file and puts it in
Pimlico’s data directory for the module.

For example, on server_a:

$./pimlico.sh pipeline.conf dump modulel
$ scp ~/modulel.tar.gz server_b:~/

Note that the dump command created a . tar.gz file in your home directory. If you want to put it somewhere else,
use the ——output option to specify a directory. The file is named after the module that you’re dumping.

Now, log into server_J and load the data.

$./pimlico.sh pipeline.conf load ~/modulel.tar.gz

Now modulel’s output data is in the right place and ready for use by module?2.

The dump and 1oad commands can also process data for multiple modules at once. For example:

$ mkdir ~/modules
$./pimlico.sh pipeline.conf dump modulel ... modulel0 —-output ~/modules
$ scp -r ~/modules server_b:~/

Then on server_b:

$./pimlico.sh pipeline.conf load ~/modules/x*

Other issues

Aside from getting data between the servers, there are certain issues that often arise when running a pipeline across
multiple servers.

* Shared Pimlico codebase. If you share the directory that contains Pimlico’s code across servers (e.g.
NFS or rsync), you can have problems resulting from sharing the libraries it installs. See instructions
for using multiple virtualenvs for the solution.

¢ Shared home directory. If you share your home directory across servers, using the same .pimlico local
config file might be a problem. See Local configuration for various possible solutions.

1.1.8 Documenting your own code

Pimlico’s documentation is produced using Sphinx. The Pimlico codebase includes a tool for generating documenta-
tion of Pimlico’s built-in modules, including things like a table of the module’s available config options and its input
and outputs.

You can also use this tool yourself to generate documentation of your own code that uses Pimlico. Typically, you will
use in your own project some of Pimlico’s built-in modules and some of your own.

Refer to Sphinx’s documentation for how to build normal Sphinx documentation — writing your own ReST documents
and using the apidoc tool to generate API docs. Here we describe how to create a basic Sphinx setup that will generate
a reference for your custom Pimlico modules.

It is assumed that you’ve got a working Pimlico setup and have already successfully written some modules.

22 Chapter 1. Contents

http://www.sphinx-doc.org/en/stable/

Pimlico Documentation, Release 0.8

Basic doc setup

Create a docs directory in your project root (the directory in which you have pimlico/ and your own src/, etc).
Put a Sphinx conf . py in there. You can start from the very basic skeleton here.

You’ll also want a Makefile to build your docs with. You can use the basic Sphinx one as a starting point. Here's
a version of that that already includes an extra target for building your module docs.

Finally, create a root document for your documentation, index . rst. This should include a table of contents which
includes the generated module docs. You can use this one as a template.

Building the module docs

Take a look in the Makefile (if you've used our one as a starting point) and set the variables at the top to point to
the Python package that contains the Pimlico modules you want to document.

The make target there runs the tool modulegen in the Pimlico codebase. Just run, in the docs/:

’make modules

You can also do this manually:

’python -m pimlico.utils.docs.modulegen —--path python.path.to.modules modules/

(The Pimlico codebase must, of course, be importable. The simplest way to ensure this is to use Pimlico’s python
alias in its bin/ directory.)

There is now a set of . rst files in the modules/ output directory, which can be built using Sphinx by running make
html.

Your beautiful docs are now in the _build/ directory!

1.2 Core docs

A set of articles on the core aspects and features of Pimlico.

1.2.1 Downloading Pimlico

To start a new project using Pimlico, download the newproject.py script. It will create a template pipeline config file
to get you started and download the latest version of Pimlico to accompany it.

See Setting up a new project using Pimlico for more detail.

Pimlico’s source code is available on on Github.

Manual setup
If for some reason you don’t want to use the newproject .py script, you can set up a project yourself. Download
Pimlico from Github.

Simply download the whole source code asa . zip or .tar.gz file and uncompress it. This will produce a directory
called pimlico, followed by a long incomprehensible string, which you can rename simply pimlico.

Pimlico has a few basic dependencies, but these will be automatically downloaded the first time you load it.

1.2. Core docs 23

https://raw.githubusercontent.com/markgw/pimlico/master/admin/newproject.py
https://github.com/markgw/pimlico
https://github.com/markgw/pimlico

Pimlico Documentation, Release 0.8

1.2.2 Pipeline config

A Pimlico pipeline, as read from a config file (pimlico.core.config.PipelineConfig) contains all the
information about the pipeline being processed and provides access to specific modules in it. A config file looks much
like a standard . ini file, with sections headed by [section_name] headings, containing key-value parameters of
the form key=value.

Each section, except for vars and pipeline, defines a module instance in the pipeline. Some of these can be
executed, others act as filters on the outputs of other modules, or input readers.

Each section that defines a module has a t ype parameter. Usually, this is a fully-qualified Python package name that
leads to the module type’s Python code (that package containing the info Python module). A special typeis alias.
This simply defines a module alias — an alternative name for an already defined module. It should have exactly one
other parameter, input, specifying the name of the module we’re aliasing.

Special sections
 vars: May contain any variable definitions, to be used later on in the pipeline. Further down, expressions like
% (varname) s will be expanded into the value assigned to varname in the vars section.
* pipeline: Main pipeline-wide configuration. The following options are required for every pipeline:
— name: a single-word name for the pipeline, used to determine where files are stored

— release: the release of Pimlico for which the config file was written. It is considered compatible
with later minor versions of the same major release, but not with later major releases. Typically, a
user receiving the pipeline config will get hold of an appropriate version of the Pimlico codebase to
run it with.

Other optional settings:

— python_path: a path or paths, relative to the directory containing the config file, in which Python
modules/packages used by the pipeline can be found. Typically, a config file is distributed with a
directory of Python code providing extra modules, datatypes, etc. Multiple paths are separated by
colons (:).

Special variable substitutions
Certain variable substitutions are always available, in addition to those defined in vars sections. Use them anywhere
in your config file with an expression like % (varname) s (note the s at the end).

e pimlico_root: Root directory of Pimlico, usually the directory pimlico/ within the project directory.

* project_root: Root directory of the whole project. Current assumed to always be the parent directory of
pimlico_root.

* output_dir: Path to output dir (usually output in Pimlico root).

* long_term_store: Long-term store base directory being used under the current config. Can be used to link
to data from other pipelines run on the same system. This is the value specified in the local config file.

* short_term_store: Short-term store base directory being used under the current config. Can be used to
link to data from other pipelines run on the same system. This is the value specified in the local config file.

* home: Running user’s home directory (on Unix and Windows, see Python’s os.path.expanduser ()).

* test_data_dir: Directory in Pimlico distribution where test data is stored (test /data in Pimlico root).
Used in test pipelines, which take all their input data from this directory.

For example, to point a parameter to a file located within the project root:

24 Chapter 1. Contents

Pimlico Documentation, Release 0.8

param=% (project_root)s/data/myfile.txt

Directives

Certain special directives are processed when reading config files. They are lines that begin with %%, followed by the
directive name and any arguments.

e variant:

Allows a line to be included only when loading a particular variant of a pipeline. For more detail
on pipeline variants, see Pipeline variants.

The variant name is specified as part of the directive in the form: variant:variant_name.
You may include the line in more than one variant by specifying multiple names, separated by
commas (and no spaces). You can use the default variant “main”, so that the line will be left out
of other variants. The rest of the line, after the directive and variant name(s) is the content that
will be included in those variants.

[my_module]
type=path.to.module

$%variant:main size=52
[
5%

variant:smaller size=7

An alternative notation for the variant directive is provided to make config files more readable. Instead of
variant:variant_name, you can write (variant_name). So the above example becomes:

[my_module]
type=path.to.module
%% (main) size=52

%% (smaller) size=7

* novariant: A line to be included only when not loading a variant of the pipeline. Equivalent to
variant :main.

[my_module]
type=path.to.module
$%$novariant size=52
$%variant:smaller size=7

e include: Include the entire contents of another file. The filename, specified relative to the config file in which
the directive is found, is given after a space.

* abstract: Marks a config file as being abstract. This means that Pimlico will not allow it to be loaded as a
top-level config file, but only allow it to be included in another config file.

* copy: Copies all config settings from another module, whose name is given as the sole argument. May be used
multiple times in the same module and later copies will override earlier. Settings given explicitly in the
module’s config override any copied settings.

All parameters are copied, including things like t ype. Any parameter can be overridden in the copying
module instance. Any parameter can be excluded from the copy by naming it after the module name.
Separate multiple exclusions with spaces.

The directive even allows you to copy parameters from multiple modules by using the directive multiple
times, though this is not very often useful. In this case, the values are copied (and overridden) in the order
of the directives.

For example, to reuse all the parameters from modulel in module?2, only specifying them once:

1.2. Core docs 25

Pimlico Documentation, Release 0.8

[modulel]
type=some.module.type
input=moduleA
paraml=56
param2=never
param3=0.75

[module2]

Copy all params from modulel
%$%copy modulel

Override the input module
input=moduleB

Multiple parameter values

Sometimes you want to write a whole load of modules that are almost identical, varying in just one or two parameters.
You can give a parameter multiple values by writing them separated by vertical bars (|). The module definition will
be expanded to produce a separate module for each value, with all the other parameters being identical.

For example, this will produce three module instances, all having the same num_1ines parameter, but each with a
different num_chars:

[my_module]
type=module.type.path
num_lines=10
num_chars=3|10]|20

You can even do this with multiple parameters of the same module and the expanded modules will cover all combina-
tions of the parameter assignments.

For example:

[my_module]
type=module.type.path
num_lines=10|50]100
num_chars=3[10|20

Tying alternatives

You can change the behaviour of alternative values using the tie_alts option. tie_alts=T will cause parameters
within the same module that have multiple alternatives to be expanded in parallel, rather than taking the product of
the alternative sets. So, if option_a has 5 values and opt ion_b has 5 values, instead of producing 25 pipeline
modules, we’ll only produce 5, matching up each pair of values in their alternatives.

[my_module]
type=module.type.path

tie_alts=T

option_a=11[2[3[4]5
option_b=one|two|three|four|five

If you want to tie together the alternative values on some parameters, but not others, you can specify groups of
parameter names to tie using the tie_alts option. Each group is separated by spaces and the names of parameters
to tie within a group are separated by | s. Any parameters that have alternative values but are not specified in one of
the groups are not tied to anything else.

26 Chapter 1. Contents

Pimlico Documentation, Release 0.8

For example, the following module config will tie together option_a’s alternatives with
option_b’s, but produce all combinations of them with option_c ‘s alternatives, resulting
in 3*2=6 versions of the module (my_module[option_a=1~option_b=one~option_c=x],
my_module[option_a=l~option_b=one~option_c=y],my_module[option_a=2~option_b=two~option_c=x]

etc).

[my_module]
type=module.type.path
tie_alts=option_aloption_b
option_a=11]2]3
option_b=onel|two|three
option_c=x|y

Using this method, you must give the parameter names in tie_alts exactly as you specify them in the config. For
example, although for a particular module you might be able to specify a certain input (the default) using the name
input or a specific name like input_data, these will not be recognised as being the same parameter in the process
of expanding out the combinations of alternatives.

Naming alternatives

Each module will be given a distinct name, based on the varied parameters. If just one is varied, the names will
be of the form module_name [param_value]. If multiple parameters are varied at once, the names will be
module_name [param_nameO=param_valueO~param_namel=param_valuel~...]. So, the first ex-
ample above will produce: my_module[3], my_module[10] and my_module [20]. And the second will pro-
duce: my_module[num_lines=10~num_chars=3], my_module[num_lines=10~num_chars=10],
etc.

You can also specify your own identifier for the alternative parameter values, instead of using the values themselves
(say, for example, if it’s a long file path). Specify it surrounded by curly braces at the start of the value in the alternatives
list. For example:

[my_module]
type=module.type.path
file_path={small}/home/me/data/corpus/small_version| {big}/home/me/data/corpus/big_

—version

This will result in the modules my_module [small] and my_module [big], instead of using the whole file path
to distinguish them.

An alternative approach to naming the expanded alternatives can be selected using the alt_naming parameter. The
default behaviour described above corresponds to alt_naming=full. If you choose alt_naming=pos, the
alternative parameter settings (using names where available, as above) will be distinguished like positional arguments,
without making explicit what parameter each value corresponds to. This can make for nice concise names in cases
where it’s clear what parameters the values refer to.

If you specify alt_naming=full explicitly, you can also give a further option
alt_naming=full (inputnames). This has the effect of removing the input_ from the start of named
inputs. This often makes for intuitive module names, but is not the default behaviour, since there’s no guarantee that
the input name (without the initial input_) does not clash with an option name.

Another possibility, which is occasionally appropriate, is alt_naming=option (<name>), where <name> is the
name of an option that has alternatives. In this case, the names of the alternatives for the whole module will be taken
directly from the alternative names on that option only. (E.g. specified by {name} or inherited from a previous
module, see below). You may specify multiple option names, separated by commas, and the corresponding alt names
will be separated by ~. If there’s only one option with alternatives, this is equivalent to alt_naming=pos. If there
are multiple, it might often lead to name clashes. The circumstance in which this is most commonly appropriate is

1.2. Core docs 27

Pimlico Documentation, Release 0.8

where you use tie_alts=T, so it’s sufficient to distinguish the alternatives by the name associated with just one
option.

Expanding alternatives down the pipeline

If a module takes input from a module that has been expanded into multiple versions for alternative parameter values, it
too will automatically get expanded, as if all the multiple versions of the previous module had been given as alternative
values for the input parameter. For example, the following will result in 3 versions of my_module (my_module[1],
etc) and 3 corresponding versions of my_next_module (my_next_module[1], etc):

[my_module]
type=module.type.path
option_a=112]3

[my_next_module]
type=another.module.type.path
input=my_module

Where possible, names given to the alternative parameter values in the first module will be carried through to the next.

Module variables: passing information through the pipeline

When a pipeline is read in, each module instance has a set of module variables associated with it. In your config
file, you may specify assignments to the variables for a particular module. Each module inherits all of the variable
assignments from modules that it receives its inputs from.

The main reason for having module variables it to be able to do things in later modules that depend on what path
through the pipeline an input came from. Once you have defined the sequence of processing steps that pass module
variables through the pipeline, apply mappings to them, etc, you can use them in the parameters passed into modules.

Basic assignment

Module variables are set by including parameters in a module’s config of the form modvar_<name> = <value>.
This will assign value to the variable name for this module. The simplest form of assignment is just a string literal,
enclosed in double quotes:

[my_module]
type=module.type.path
modvar_myvar = "Value of my variable"

Names of alternatives

Say we have a simple pipeline that has a single source of data, with different versions of the dataset for different
languages (English and Swedish). A series of modules process each language in an identical way and, at the end,
outputs from all languages are collected by a single summary module. This final module may need to know what
language each of its incoming datasets represents, so that it can output something that we can understand.

The two languages are given as alternative values for a parameter path, and the whole pipeline gets automatically
expanded into two paths for the two alternatives:

28 Chapter 1. Contents

Pimlico Documentation, Release 0.8

path = {en}/tofenglish

(input src[en]

path = ftojenglish

‘input src[sv] |

path = /to/swedish
| {sv}ito/swedish . J L

‘processl |

kinput = input_src

'

'process? process2[en]| [process2[sv] |

|Input = processl Input = processl input = processl

summary summary
input = *process2 input = *process2

processl[sv]
input = input_src

'

processl[en]
Linpul: = input_src

.

' 4

~y

The summary module gets its two inputs for the two different languages as a multiple-input: this means we could
expand this pipeline to as many languages as we want, just by adding to the input_src module’s path parameter.

However, as far as summary is concerned, this is just a list of datasets — it doesn’t know that one of them is English
and one is Swedish. But let’s say we want it to output a table of results. We’re going to need some labels to identify
the languages.

The solution is to add a module variable to the first module that takes different values when it gets expanded into two
modules. For this, we can use the altname function in a modvar assignment: this assigns the name of the expanded
module’s alternative for a given parameter that has alternatives in the config.

[input_src]
path={en}/to/english | {sv}/to/swedish
modvar_lang=altname (path)

Now the expanded module input_src[en] will have the module variable lang="en" and the Swedish version
lang="sv". This value gets passed from module to module down the two paths in the pipeline.

Other assignment syntax

A further function map allows you to apply a mapping to a value, rather like a Python dictionary lookup. Its first
argument is the value to be mapped (or anything that expands to a value, using modvar assignment syntax). The
second is the mapping. This is simply a space-separated list of source-target mappings of the form source ->
target. Typically both the sources and targets will be string literals.

Now we can give our languages legible names. (Here we’re splitting the definition over multiple indented lines, as
permitted by config file syntax, which makes the mapping easier to read.)

[input_src]

path={en}/to/english |

modvar_lang=map (
altname (path),

—-> "English"

-> "Svenska")

{sv}/to/swedish

"an"

" n

SV

1.2. Core docs 29

Pimlico Documentation, Release 0.8

The assignments may also reference variable names, including those previously assigned to in the same module and
those received from the input modules.

[input_src]

path={en}/to/english | {sv}/to/swedish
modvar_lang=altname (path)
modvar_lang_name=map (

lang,
"en" -> "English"
"sv" -> "Svenska")

If a module gets two values for the same variable from multiple inputs, the first value will simply be overridden by the
second. Sometimes it’s useful to map module variables from specific inputs to different modvar names. For example,
if we’re combining two different languages, we might need to keep track of what the two languages we combined
were. We can do this using the notation input_name.var_name, which refers to the value of module variable
var_name that was received from input input_name.

[input_src]
path={en}/to/english | {sv}/to/swedish
modvar_lang=altname (path)

[combiner]
type=my.language.combiner
input_lang_a=lang_data
input_lang_b=lang_data
modvar_first_lang=lang_a.lang
modvar_second_lang=lang_b.lang

If a module inherits multiple values for the same variable from the same input (i.e. a multiple-input), they are all kept
and treated as a list. The most common way to then use the values is via the join function. Like Python’s string.
join, this turns a list into a single string by joining the values with a given separator string. Use join (sep,
list) to join the values coming from some list modvar 1ist on the separator sep.

You can get the number of values in a list modvar using len (1ist), which works just like Python’s 1en ().

Use in module parameters

To make something in a module’s execution dependent on its module variables, you can insert them into module
parameters.

For example, say we want one of the module’s parameters to make use of the 1ang variable we defined above:

[input_src]

path={en}/to/english | {sv}/to/swedish
modvar_lang=altname (path)

some_param=$ (lang)

Note the difference to other variable substitutions, which use the % (varname) s notation. For modvars, we use the
notation $ (varname).

We can also put the value in the middle of other text:

[input_src]

path={en}/to/english | {sv}/to/swedish
modvar_lang=altname (path)
some_param=myval-$ (lang)-continues

30 Chapter 1. Contents

Pimlico Documentation, Release 0.8

The modvar processing to compute a particular module’s set of variable assignments is performed before the substitu-
tion. This means that you can do any modvar processing specific to the module instance, in the various ways defined
above, and use the resulting value in other parameters. For example:

[input_src]
path={en}/to/english | {sv}/to/swedish
modvar_lang=altname (path)
modvar_mapped_lang=map (lang,
"en" -> "eng"
"sv" —-> "swe"
)

some_param=$ (mapped_lang)

You can also place in the $ (. ..) construct any of the variable processing operations shown above for assignments
to module variables. This is a little more concise than first assigning values to modvars, if you don’t need to use the
variables again anywhere else. For example:

[input_src]
path={en}/to/english | {sv}/to/swedish
some_param=$ (map (altname (path)),

llen" 7> "eng"

sv" —> "swe

Usage in module code

A module’s executor can also retrieve the values assigned to module variables from the module_variables at-
tribute of the module-info associated with the input dataset. Sometimes this can be useful when you are writing
your own module code, though the above usage to pass values from (or dependent on) module variables into module
parameters is more flexible, so should generally be preferred.

Code 1in executor
This is a MultiplelInput-type input, so we get a list of datasets
datasets = self.info.get_input ()
for d in datasets:
language = d.module.module_variables["lang"]

1.2.3 Pipeline variants

Todo: Document variants

1.2.4 Pimlico module structure

This document describes the code structure for Pimlico module types in full.

For a basic guide to writing your own modules, see Writing Pimlico modules.

Todo: Write documentation for this

1.2. Core docs 31

Pimlico Documentation, Release 0.8

1.2.5 Module dependencies

In a Pimlico pipeline, you typically use lots of different external software packages. Some are Python packages, others
system tools, Java libraries, whatever. Even the core modules that core with Pimlico between them depend on a huge
amount of software.

Naturally, we don’t want to have to install all of this software before you can run even a simple Pimlico pipeline that
doesn’t use all (or any) of it. So, we keep the core dependencies of Pimlico to an absolute minimum, and then check
whether the necessary software dependencies are installed each time a pipeline module is going to be run.

Core dependencies

Certain dependencies are required for Pimlico to run at all, or needed so often that you wouldn’t get far without
installing them. These are defined in pimlico.core.dependencies. core, and when you run the Pimlico
command-line interface, it checks they’re available and tries to install them if they’re not.

Module dependencies

Each module type defines its own set of software dependencies, if it has any. When you try to run the module, Pimlico
runs some checks to try to make sure that all of these are available.

If some of them are not, it may be possible to install them automatically, straight from Pimlico. In particular, many
Python packages can be very easily installed using Pip. If this is the case for one of the missing dependencies, Pimlico
will tell you in the error output, and you can install them using the install command (with the module name/number
as an argument).

Virtualenv

In order to simplify automatic installation, Pimlico is always run within a virtual environment, using Virtualenv. This
means that any Python packages installed by Pip will live in a local directory within the Pimlico codebase that you’re
running and won’t interfere with anything else on your system.

When you run Pimlico for the first time, it will create a new virtualenv for this purpose. Every time you run it after
that, it will use this same environment, so anything you install will continue to be available.

Custom virtualenv

Most of the time, you don’t even need to be aware of the virtualenv that Python’s running in'. Under certain circum-
stances, you might need to use a custom virtualenv.

For example, say you’re running your pipeline over different servers, but have the pipeline and Pimlico codebase on a
shared network drive. Then you can find that the software installed in the virtualenv on one machine is incompatible
with the system-wide software on the other.

You can specify a name for a custom virtualenv using the environment variable PIMENV. The first time you run
Pimlico with this set, it will automatically create the new virtualenv.

$ PIMENV=myenv ./pimlico.sh mypipeline.conf status

Replace myenv with a name that better reflects its use (e.g. name of the server).

Every time you run Pimlico on that server, set the PIMENV environment variable in the same way.

U If you’re interested, it lives in pimlico/lib/virtualenv/default

32 Chapter 1. Contents

https://pypi.python.org/pypi/pip
https://virtualenv.pypa.io/en/stable/

Pimlico Documentation, Release 0.8

In case you want to get to the virtualenv itself, you can find itin pimlico/lib/virtualenv/myenv.

Note: Pimlico previously used another environment variable VIRTUALENV, which gave a path to the virtualenv. You
can still use this, but, unless you have a good reason to, it’s easier to use PIMENV.

Defining module dependencies

Todo: Describe how module dependencies are defined for different types of deps

Some examples

Todo: Include some examples from the core modules of how deps are defined and some special cases of software
fetching

1.2.6 Local configuration

As well as knowing about the pipeline you’re running, Pimlico also needs to know some things about the setup of the
system on which you’re running it. This is completely independent of the pipeline config: the same pipeline can be
run on different systems with different local setups.

A couple of settings must always be provided for Pimlico: the long-term and short-term stores (see Long-term and
short-term stores below). Other system settings may be specified as necessary. (At the time of writing, there aren’t
any, but they will be documented here as they arise.) See Other Pimlico settings below.

Specific modules may also have system-level settings. For example, a module that calls an external tool may need to
know the location of that tool, or how much memory it can use on this system. Any that apply to the built-in Pimlico
modules are listed below in Settings for built-in modules.

Local config file location

Pimlico looks in various places to find the local config settings. Settings are loaded in a particular order,
overriding earlier versions of the same setting as we go (see pimlico.core.config.PipelineConfig.
load local_config()).

Settings are specified with the following order of precedence (those later override the earlier):

local config file < host-specific config file < cmd-line overrides

Most often, you’ll just specify all settings in the main local config file. This is a file in your home directory named
.pimlico. This must exist for Pimlico to be able to run at all.

Host-specific config

If you share your home directory between different computers (e.g. a networked filesystem), the above setup could
cause a problem, as you may need a different local config on the different computers. Pimlico allows you to have
special config files that only get read on machines will a particular hostname.

1.2. Core docs 33

Pimlico Documentation, Release 0.8

For example, say I have two computers, Localbox and remotebox, which share a home directory. I've created my
.pimlico local config file on localbox, but need to specify a different storage location on remotebox. I simply
create another config file called .pimlico_remotebox™ " [#hostname]_. Pimlico will load first
the basic local config in " .pimlico and then override those settings with what it reads from the
host-specific config file.

You can also specify a hostname prefix to match. Say I’ve got a whole load of computers I want to be able to run on,
with hostnames remotebox1, remotebox2, etc. If I create a config file called .pimlico_remotebox—, it will
be used on all of these hosts.

Command-line overrides

Occasionally, you might want to specify a local config setting just for one run of Pimlico. Use the
-—override-local-config (or —1) to specify a value for an individual setting in the form setting=value.
For example:

./pimlico.sh mypipeline.conf -1 somesetting=5 run mymodule

If you want to override multiple settings, simply use the option multiple times.

Custom location

If the above solutions don’t work for you, you can also explicitly specify on the command line an alternative location
from which to load the local config file that Pimlico typically expects to find in ~/ .pimlico.

Use the ——1ocal-config parameter to give a filename to use instead of the ~/ .pimlico.

For example, if your home directory is shared across servers and the above hostname-specific config solution doesn’t
work in your case, you can fall back to pointing Pimlico at your own host-specific config file.

Long-term and short-term stores

Pimlico needs to know where to put and find output files as it executes. Settings are given in the local config, since
they apply to all Pimlico pipelines you run and may vary from system to system. Note that Pimlico will make sure
that different pipelines don’t interfere with each other’s output (provided you give them different names): all pipelines
store their output and look for their input within these same base locations.

The short-term store should be on a disk that’s as fast as possible to write to. For example, avoid using an NFS disk.
It needs to be large enough to store output between pipeline stages, though you can easily move output from earlier
stages into the long-term store as you go along.

The long-term store is where things are typically put at the end of a pipeline. It therefore doesn’t need to be super-fast
to access, but you may want it to be in a location that gets backed up, so you don’t lose your valuable output.

For a simple setup, these could be just two subdirectories of the same directory, or actually the same directory. How-
ever, it can be useful to distinguish them.

Specific the locations in the local config like this:

long_term_store=/path/to/long-term/store
short_term_store=/path/to/short-term/store

Remember, these paths are not specific to a pipeline: all pipelines will use different subdirectories of these ones.

34 Chapter 1. Contents

Pimlico Documentation, Release 0.8

Other Pimlico settings

In future, there will no doubt be more settings that you can specify at the system level for Pimlico. These will be
documented here as they arise.

Settings for built-in modules

Specific modules may consult the local config to allow you to specify settings for them. We cannot document them
here for all modules, as we don’t know what modules are being developed outside the core codebase. However, we
can provide a list here of the settings consulted by built-in Pimlico modules.

There aren’t any yet, but they will be listed here as they arise.

Footnotes:

1.2.7 Python scripts

All the heavy work of your data-processing is implemented in Pimlico modules, either by loading core Pimlico mod-
ules from your pipeline config file or by writing your own modules. Sometimes, however, it can be handy to write a
quick Python script to get hold of the output of one of your pipeline’s modules and inspect it or do something with it.

This can be easily done writing a Python script and using the python shell command to run it. This command loads
your pipeline config (just like all others) and then either runs a script you’ve specified on the command line, or enters
an interactive Python shell. The advantages of this over just running the normal python command on the command
line are that the script is run in the same execution context used for your pipeline (e.g. using the Pimlico instance’s
virtualenv) and that the loaded pipeline is available to you, so you can easily can hold of its data locations, datatypes,
etc.

Accessing the pipeline

At the top of your Python script, you can get hold of the loaded pipeline config instance like this:

from pimlico.cli.pyshell import get_pipeline

pipeline = get_pipeline()

Now you can use this to get to, among other things, the pipeline’s modules and their input and output datasets. A
module called modulel can be accessed by treating the pipeline like a dict:

’module = pipeline["modulel"]

This gives you the ModuleInfo instance for that module, giving access to its inputs, outputs, options, etc:

’data = module.get_output ("output_name™)

Writing and running scripts

All of the above code to access a pipeline can be put in a Python script somewhere in your codebase and run from the
command line. Let’s say I create a script src/python/scripts/myscript .py containing:

1.2. Core docs 35

Pimlico Documentation, Release 0.8

from pimlico.cli.pyshell import get_pipeline

pipeline = get_pipeline ()

module = pipeline["modulel"]

data = module.get_output ("output_name")

Here we can start probing the data using whatever interface the datatype provides
print data

Now I can run this from the root directory of my project as follows:

’./pimlico.sh mypipeline.conf python src/python/scripts/myscript.py

1.3 Core Pimlico modules

Pimlico comes with a substantial collection of module types that provide wrappers around existing NLP and machine
learning tools, as well as a number of general tools for processing datasets that are useful for many applications.

1.3.1 CAEVO event extractor

Path pimlico.modules.caevo
Executable | yes

CAEVO is Nate Chambers’ CAscading EVent Ordering system, a tool for extracting events of many types from text
and ordering them.

CAEVO is open source, implemented in Java, so is easily integrated into Pimlico using Py4]J.

Inputs
Name Type(s)
documents | TarredCorpus<RawTextDocumentType>
Outputs
Name | Type(s)
events CaevoCorpus
Options
Name Description Type

sieveg Filename of sieve list file, or path to the file. If just a filename, assumed to be in Caevo model dir | string
(models/caevo). Default: default.sieves (supplied with Caevo)

36 Chapter 1. Contents

http://www.usna.edu/Users/cs/nchamber/caevo/
https://github.com/nchambers/caevo

Pimlico Documentation, Release 0.8

Submodules

CAEVO output convertor

Path pimlico.modules.caevo.output
Executable | yes

Tool to split up the output from Caevo and convert it to other datatypes.

Caevo output includes the output from a load of NLP tools that it runs as prerequisites to event extraction, etc. The
individual parts of the output can easily be retrieved from the output corpus via the output datatype. In order to be able
to use them as input to other modules, they need to be converted to compatible standard datatypes.

For example, tokenization output is stored in Caevo’s XML output using a special format. Instead of writing other
modules in such a way as to be able to pull this information out of the :class:~pimlico.datatypes.CaevoCorpus, you
can filter the output using this module to provide a :class:~pimlico.datatypes.TokenizedCorpus, which is a standard
format for input to other module types.

As with other document map modules, you can use this as a filter (filter=T), so you can actually need to commit the
converted data to disk.

Todo: Add more output convertors: currently only provides tokenization

Inputs

Name Type(s)
documents | CaevoCorpus

Outputs

No non-optional outputs

Optional
Name Type(s)
tokenized | TokenizedCorpus
parse ConstituencyParseTreeCorpus
pos WordAnnotationCorpusWithWordAndPos
Options
Name Description Type

gzip | If True, each output, except annotations, for each document is gzipped. This can help reduce the | bool
storage occupied by e.g. parser or coref output. Default: False

1.3. Core Pimlico modules 37

Pimlico Documentation, Release 0.8

1.3.2 C&C parser

Path pimlico.modules.candc
Executable | yes

Wrapper around the original C&C parser.

Takes tokenized input and parses it with C&C. The output is written exactly as it comes out from C&C. It contains
both GRs and supertags, plus POS-tags, etc.

The wrapper uses C&C’s SOAP server. It sets the SOAP server running in the background and then calls C&C’s SOAP
client for each document. If parallelizing, multiple SOAP servers are set going and each one is kept constantly fed
with documents.

Inputs
Name Type(s)
documents | TarredCorpus<TokenizedDocumentType>
Outputs
Name | Type(s)
parsed | CandcOutputCorpus
Options
Namle Description Type|

model Absolute path to models directory or name of model set. If not an absolute path, assumed to be a | string
subdirectory of the candcs models dir (see instructions in models/candc/README on how to fetch
pre-trained models)

1.3.3 Stanford CoreNLP

Path pimlico.modules.corenlp
Executable | yes

Process documents one at a time with the Stanford CoreNLP toolkit. CoreNLP provides a large number of NLP tools,
including a POS-tagger, various parsers, named-entity recognition and coreference resolution. Most of these tools can
be run using this module.

The module uses the CoreNLP server to accept many inputs without the overhead of loading models. If parallelizing,
only a single CoreNLP server is run, since this is designed to set multiple Java threads running if it receives multiple
queries at the same time. Multiple Python processes send queries to the server and process the output.

The module has no non-optional outputs, since what sort of output is available depends on the options you pass in:
that is, on which tools are run. Use the annotations option to choose which word annotations are added. Otherwise,
simply select the outputs that you want and the necessary tools will be run in the CoreNLP pipeline to produce those
outputs.

38 Chapter 1. Contents

http://svn.ask.it.usyd.edu.au/trac/candc/
http://stanfordnlp.github.io/CoreNLP/

Pimlico Documentation, Release 0.8

Currently, the module only accepts tokenized input. If pre-POS-tagged input is given, for example, the POS tags won’t
be handed into CoreNLP. In the future, this will be implemented.

We also don’t currently provide a way of choosing models other than the standard, pre-trained English models. This
is a small addition that will be implemented in the future.

Inputs

Name Type(s)
documents | TarredCorpus<WordAnnotationsDocumentTypelTokenizedDocumentTypelRawTextDocumentType>

Outputs

No non-optional outputs

Optional
Name Type(s)
annotations | AnnotationFieldsFromOptions
tokenized TokenizedCorpus
parse ConstituencyParseTreeCorpus
parse-deps StanfordDependencyParseCorpus
dep-parse StanfordDependencyParseCorpus
raw JsonDocumentCorpus
coref CorefCorpus

Options

Namk Description Type

gzip | If True, each output, except annotations, for each document is gzipped. This can help | bool
reduce the storage occupied by e.g. parser or coref output. Default: False
time-| Timeout for the CoreNLP server, which is applied to every job (document). Number of | float
out | seconds. By default, we use the server’s default timeout (15 secs), but you may want to
increase this for more intensive tasks, like coref

read-| If True, JSON outputs are formatted in a readable fashion, pretty printed. Otherwise, | bool
able | they’re as compact as possible. Default: False
an- | Comma-separated list of word annotations to add, from CoreNLP’s annotators. Choose | string
no- | from: word, pos, lemma, ner

ta-
tors
dep_tyfgype of dependency parse to output, when outputting dependency parses, either from a | ‘basic’, ‘col-
constituency parse or direct dependency parse. Choose from the three types allowed by | lapsed’ or
CoreNLP: ‘basic’, ‘collapsed’ or ‘collapsed-ccprocessed’ ‘collapsed-
ccprocessed’

1.3. Core Pimlico modules 39

Pimlico Documentation, Release 0.8

1.3.4 Corpus manipulation

Core modules for generic manipulation of mainly iterable corpora.

Corpus concatenation

Path

pimlico.modules.corpora.concat

Executable | no

Concatenate two corpora to produce a bigger corpus.

They must have the same data point type, or one must be a subtype of the other.

In theory, we could find the most specific common ancestor and use that as the output type, but this is not currently
implemented and may not be worth the trouble. Perhaps we will add this in future.

This is a filter module. It is not executable, so won’t appear in a pipeline’s list of modules that can be run. It produces
its output for the next module on the fly when the next module needs it.

Inputs

Name | Type(s)

corpora | list of IterableCorpus

Outputs

Name | Type(s)

corpus | corpus with data-point from input

Corpus statistics

Path

pimlico.modules.corpora.corpus_stats

Executable | yes

Some basic statistics about tokenized corpora

Counts the number of tokens, sentences and distinct tokens in a corpus.

Inputs

Name

Type(s)

corpus

TarredCorpus<TokenizedDocumentType>

40

Chapter 1. Contents

Pimlico Documentation, Release 0.8

Outputs

Name | Type(s)
stats NamedFile ()

Human-readable formatting

Path pimlico.modules.corpora.format
Executable | yes

Corpus formatter

Pimlico provides a data browser to make it easy to view documents in a tarred document corpus. Some datatypes
provide a way to format the data for display in the browser, whilst others provide multiple formatters that display the

data in

different ways.

This module allows you to use this formatting functionality to output the formatted data as a corpus. Since the
formatting operations are designed for display, this is generally only useful to output the data for human consumption.

Inputs
Name | Type(s)
corpus | TarredCorpus
Outputs
Name Type(s)
formatted | TarredCorpus
Options
Namé Description Type|
for- | Fully qualified class name of a formatter to use to format the data. If not specified, the default | string
mat- | formatter is used, which uses the datatype’s browser_display attribute if available, or falls back to
ter | just converting documents to unicode

Corpus document list filter

Path pimlico.modules.corpora.list_filter
Executable | yes

Similar to :mod:pimlico.modules.corpora.split, but instead of taking a random split of the dataset, splits it according
to a given list of documents, putting those in the list in one set and the rest in another.

1.3. Core Pimlico modules

41

Pimlico Documentation, Release 0.8

Inputs
Name | Type(s)
corpus | TarredCorpus
list StringList
Outputs
Name | Type(s)
setl same as input corpus
set2 same as input corpus
Corpus split
Path pimlico.modules.corpora.split

Executable | yes

Split a tarred corpus into two subsets. Useful for dividing a dataset into training and test subsets. The output datasets
have the same type as the input. The documents to put in each set are selected randomly. Running the module multiple
times will give different splits.

Note that you can use this multiple times successively to split more than two ways. For example, say you wanted a
training set with 80% of your data, a dev set with 10% and a test set with 10%, split it first into training and non-training
80-20, then split the non-training 50-50 into dev and test.

The module also outputs a list of the document names that were included in the first set. Optionally, it outputs the
same thing for the second input too. Note that you might prefer to only store this list for the smaller set: e.g. in a
training-test split, store only the test document list, as the training list will be much larger. In such a case, just put the
smaller set first and don’t request the optional output doc_list2.

Inputs

Name | Type(s)

corpus | TarredCorpus

Outputs

Name Type(s)

setl same as input corpus
set2 same as input corpus
doc_listl | StringList

42 Chapter 1. Contents

Pimlico Documentation, Release 0.8

Optional
Name Type(s)
doc_list2 | StringList
Options
Namé Description Type
setl_siRroportion of the corpus to put in the first set, float between 0.0 and 1.0. If an integer >1 is given, | float

Default: 0.2 (20%)

this is treated as the absolute number of documents to put in the first set, rather than a proportion.

Corpus subset

Path

pimlico.modules.corpora.subset

Executable | no

Simple filter to truncate a dataset after a given number of documents, potentially offsetting by a number of documents.

Mainly useful for creating small subsets of a corpus for testing a pipeline before running on the full corpus.

Can be run on an iterable corpus or a tarred corpus. If the input is a tarred corpus, the filter will emulate a tarred corpus
with the appropriate datatype, passing through the archive names from the input.

When a number of valid documents is required (calculating corpus length when skipping invalid docs), if one is stored

in the metadata as valid_documents, that count is used instead of iterating over the data to count them up.

This is a filter module. It is not executable, so won’t appear in a pipeline’s list of modules that can be run. It produces
its output for the next module on the fly when the next module needs it.

Inputs

Name Type(s)

documents | ITterableCorpus

Outputs

Name

Type(s)

documents

corpus with data-point from input

1.3. Core Pimlico modules

43

Pimlico Documentation, Release 0.8

Options
Name| Description Type
off- Number of documents to skip at the beginning of the corpus (default: 0, start at beginning) int
set

skip_inv8kitp over any invalid documents so that the output subset contains the chosen number of (valid) | bool
documents (or as many as possible) and no invalid ones. By default, invalid documents are passed
through and counted towards the subset size

size (required) Number of documents to include int

Tar archive grouper

Path pimlico.modules.corpora.tar
Executable | yes

Group the files of a multi-file iterable corpus into tar archives. This is a standard thing to do at the start of the pipeline,
since it’s a handy way to store many (potentially small) files without running into filesystem problems.

The files are simply grouped linearly into a series of tar archives such that each (apart from the last) contains the given
number.

After grouping documents in this way, document map modules can be called on the corpus and the grouping will be
preserved as the corpus passes through the pipeline.

Note: There is a fundamental problem with this module. It stores the raw data that it gets as input, and reports the
output type as the same as the input type. However, it doesn’t correctly write that type. A lot of the time, this isn’t a
problem, but it means that it doesn’t write corpus metadata that may be needed by the datatype to read the documents
correctly.

The new datatypes system will provide a solution to this problem, but until then the safest approach is not to use this
module, but always use tar_filter instead, which doesn’t have this problem.

Inputs

Name Type(s)
documents | TterableCorpus

Outputs

Name Type(s)
documents | tarred corpus with input doc type

44 Chapter 1. Contents

Pimlico Documentation, Release 0.8

Options
Name Description Type
archive_size Number of documents to include in each archive (default: 1k) string
archive_basenam¢ Base name to use for archive tar files. The archive number is appended to this. (Default: | string
‘archive’)

Tar archive grouper (filter)

Path pimlico.modules.corpora.tar_filter
Executable | no

Like tar, but doesn’t write the archives to disk. Instead simulates the behaviour of tar but as a filter, grouping files
on the fly and passing them through with an archive name

This is a filter module. It is not executable, so won’t appear in a pipeline’s list of modules that can be run. It produces
its output for the next module on the fly when the next module needs it.

Inputs
Name Type(s)
documents | TterableCorpus
Outputs
Name Type(s)
documents | tarred corpus with input doc type
Options
Name Description Type
archive_size Number of documents to include in each archive (default: 1k) string
archive_basename¢ Base name to use for archive tar files. The archive number is appended to this. (Default: | string
‘archive’)

Corpus vocab builder

Path pimlico.modules.corpora.vocab_builder
Executable | yes

Builds a dictionary (or vocabulary) for a tokenized corpus. This is a data structure that assigns an integer ID to every
distinct word seen in the corpus, optionally applying thresholds so that some words are left out.

1.3. Core Pimlico modules 45

Pimlico Documentation, Release 0.8

Similar to pimlico.modules. features.vocab_builder, which builds two vocabs, one for terms and one
for features.

Inputs
Name | Type(s)
text TarredCorpus<TokenizedDocumentType>
Outputs
Name | Type(s)
vocab | Dictionary
Options
Name Description Type
thresht Minimum number of occurrences required of a term to be included int
old
max_prépclude terms that occur in max this proportion of documents float
in- Ensure that certain words are always included in the vocabulary, even if they don’t make | comma-
clude | it past the various filters, or are never seen in the corpus. Give as a comma-separated list | separated list
of strings
limit | Limit vocab size to this number of most common entries (after other filters) int
oov | Use the final index the represent chars that will be out of vocabulary after applying thresh- | string
old/limit filters. Applied even if the count is 0. Represent OOV using the given string in
the vocabulary

Token frequency counter

Path pimlico.modules.corpora.vocab_counter
Executable | yes

Count the frequency of each token of a vocabulary in a given corpus (most often the corpus on which the vocabulary
was built).

Note that this distribution is not otherwise available along with the vocabulary. It stores the document frequency counts
- how many documents each token appears in - which may sometimes be a close enough approximation to the actual
frequencies. But, for example, when working with character-level tokens, this estimate will be very poor.

The output will be a 1D array whose size is the length of the vocabulary, or the length plus one, if oov_excluded=T
(used if the corpus has been mapped so that OOV are represented by the ID vocab_size+1, instead of having a special
token).

46 Chapter 1. Contents

Pimlico Documentation, Release 0.8

Inputs
Name | Type(s)
corpus | TarredCorpus<IntegerListsDocumentType>
vocab | Dictionary
Outputs
Name Type(s)
distribution | NumpyArray
Options
Name Description Type

oov_excludehhdicates that the corpus has been mapped so that OOVs are represented by the ID vocab_size+1, | bool
instead of having a special token in the vocab

Tokenized corpus to ID mapper

Path pimlico.modules.corpora.vocab_mapper
Executable | yes

Inputs
Name | Type(s)
text TarredCorpus<TokenizedDocumentType>
vocab | Dictionary
Outputs
Name | Type(s)
ids IntegerListsDocumentCorpus
Options
Name | Description Type
ooV If given, special token to map all OOV characters to. Otherwise, use vocab_size+1 as index | string

1.3. Core Pimlico modules 47

Pimlico Documentation, Release 0.8

1.3.5 Embedding feature extractors and trainers

Modules for extracting features from which to learn word embeddings from corpora, and for training embeddings.

Some of these don’t actually learn the embeddings, they just produce features which can then be fed into an embedding
learning module, such as a form of matrix factorization. Note that you can train embeddings not only using the
trainers here, but also using generic matrix manipulation techniques, for example the factorization methods provided
by sklearn.

Dependency feature extractor for embeddings

Path pimlico.modules.embeddings.dependencies
Executable | yes

Todo: Document this module

Inputs
Name Type(s)
dependencies | TarredCorpus<CoNLLDependencyParseDocumentType>
Outputs
Name Type(s)
term_features | TermFeatureListCorpus
Options
Name | Description Type
lemma | Uselemmas as terms instead of the word form. Note that if you didn’t run a lemmatizer | bool
before dependency parsing the lemmas are probably actually just copies of the word
forms
con- Where a word is modified ... TODO string
dense_ptep
term_pos Only extract features for terms whose POSs are in this comma-separated list. Put a * | comma-
at the end to denote POS prefixes separated list
of strings
skip_typgsDependency relations to skip, separated by commas comma-
separated list
of strings

48 Chapter 1. Contents

Pimlico Documentation, Release 0.8

Word2vec embedding trainer

Path pimlico.modules.embeddings.word2vec
Executable | yes

Word2vec embedding learning algorithm, using Gensim’s implementation.

Find out more about word2vec.

This module is simply a wrapper to call Gensim’s Python (+C) implementation of word2vec on a Pimlico corpus.

Inputs
Name | Type(s)
text TarredCorpus<TokenizedDocumentType>
Outputs
Name | Type(s)
model | Embeddings
Options
Name Description Type
iters number of iterations over the data to perform. Default: 5 int
min_count word2vec’s min_count option: prunes the dictionary of words that appear fewer than this | int
number of times in the corpus. Default: 5
nega- number of negative samples to include per positive. Default: 5 int
tive_samples
size number of dimensions in learned vectors. Default: 200 int

1.3.6 Feature set processing

Various tools for generic processing of extracted sets of features: building vocabularies, mapping to integer indices,

etc.

Key-value to term-feature converter

Path pimlico.modules.features.term_feature_compiler
Executable | yes

Todo: Document this module

1.3. Core Pimlico modules

49

https://radimrehurek.com/gensim/
https://code.google.com/archive/p/word2vec/
https://radimrehurek.com/gensim/models/word2vec.html

Pimlico Documentation, Release 0.8

Inputs
Name Type(s)
key_values | TarredCorpus<KeyValueListDocumentType>
Outputs
Name Type(s)
term_features | TermFeatureListCorpus
Options
Name | Description Type

term_keyName of keys (feature names in the input) which denote terms. The first one found in the | comma-
keys of a particular data point will be used as the term for that data point. Any other matches | separated
will be removed before using the remaining keys as the data point’s features. Default: just | list of
‘term’ strings
in- If True, include the key together with the value from the input key-value pairs as feature | bool
clude_feanmmekeaysthe output. Otherwise, just use the value. E.g. for input [prop=wordy, poss=my], if
True we get features [prop_wordy, poss_my] (both with count 1); if False we get just [wordy,
my]. Default: False

Term-feature matrix builder

Path pimlico.modules.features.term_feature_matrix_builder
Executable | yes

Todo: Document this module

Inputs

Name | Type(s)

data IndexedTermFeatureListCorpus

Outputs

Name | Type(s)
matrix | ScipySparseMatrix

50 Chapter 1. Contents

Pimlico Documentation, Release 0.8

Term-feature corpus vocab builder

Path pimlico.modules.features.vocab_builder
Executable | yes

Todo: Document this module

Inputs
Name Type(s)
term_features | TarredCorpus<TermFeatureListDocumentType>
Outputs
Name Type(s)
term_vocab Dictionary
feature_vocab | Dictionary
Options
Name Description Type
feature_limit Limit vocab size to this number of most common entries (after other filters) | int
feature_max_prop | Include features that occur in max this proportion of documents float
term_max_prop Include terms that occur in max this proportion of documents float
term_threshold Minimum number of occurrences required of a term to be included int
feature_threshold | Minimum number of occurrences required of a feature to be included int
term_limit Limit vocab size to this number of most common entries (after other filters) | int

Term-feature corpus vocab mapper

Path pimlico.modules.features.vocab_mapper
Executable | yes

Todo: Document this module

1.3. Core Pimlico modules

51

Pimlico Documentation, Release 0.8

Inputs
Name Type(s)
data TarredCorpus<TermFeatureListDocumentType>
term_vocab Dictionary
feature_vocab | Dictionary
Outputs

Name | Type(s)

data IndexedTermFeatureListCorpus

1.3.7 Input readers

Various input readers for various datatypes. These are used to read in data from some external source, such as a corpus
in its distributed format (e.g. XML files or a collection of text files), and present it to the Pimlico pipeline as a Pimlico
dataset, which can be used as input to other modules.

They do not typically store the data as a Pimlico dataset, but produce it on the fly, although sometimes it could be
appropriate to do otherwise.

Note that there can be multiple input readers for a single datatype. For example, there are many ways to read in a
corpus of raw text documents, depending on the format they’re stored in. They might by in one big XML file, text
files collected into compressed archives, a big text file with document separators, etc. These all require their own input
reader and all of them produce the same output corpus type.

Note: These input readers are ultimately intended to replace reading input data using a datatype’s
input_module_options. That functionality will be removed altogether as part of the development of the new
datatype system, so it should be phased out now and replaced by input reader modules for each datatype.

Package pimlico.modules.input.embeddings

FastText embedding reader

Path pimlico.modules.input.embeddings.fasttext
Executable | yes

Reads in embeddings from the FastText format, storing them in the format used internally in Pimlico for embeddings.
Can be used, for example, to read the pre-trained embeddings offered by Facebook Al.

Currently only reads the text format (. vec), not the binary format (.bin).

See also:

pimlico.modules. input.embeddings. fasttext gensim: An alternative reader that uses Gensim’s
FastText format reading code and permits reading from the binary format, which contains more information.

52 Chapter 1. Contents

https://github.com/facebookresearch/fastText
https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md

Pimlico Documentation, Release 0.8

Inputs
No inputs
Outputs
Name Type(s)
embeddings | Embeddings
Options
Name Description Type
path | (required) Path to the FastText embedding file string

limits to the N most common words

limit | Limit to the first N words. Since the files are typically ordered from most to least frequent, this | int

FastText embedding reader using Gensim

Path pimlico.modules.input.embeddings.fasttext_gensim

Executable | yes

Reads in embeddings from the FastText format, storing them in the format used internally in Pimlico for embeddings.
This version uses Gensim’s implementation of the format reader, so depends on Gensim.

Can be used, for example, to read the pre-trained embeddings offered by Facebook Al.

Reads only the binary format (. bin), not the text format (. vec).

See also:

pimlico.modules. input.embeddings. fasttext: An alternative reader that does not use Gensim. It per-

mits (only) reading the text format.

Inputs

No inputs

Outputs
Name Type(s)
embeddings | Embeddings

1.3. Core Pimlico modules

53

https://github.com/facebookresearch/fastText
https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md

Pimlico Documentation, Release 0.8

Options
Name | Description Type
path (required) Path to the FastText embedding file (.bin) | string
Text corpora
Raw text files
Path pimlico.modules.input.text.raw_text_files
Executable | no

Input reader for raw text file collections. Reads in files from arbitrary locations specified by a list of globs.

The input paths must be absolute paths (or globs), but remember that you can make use of various special substitutions

in the config file to give paths relative to your project root, or other locations.

The file paths may use globs to match multiple files. By default, it is assumed that every filename should exist and
every glob should match at least one file. If this does not hold, the dataset is assumed to be not ready. You can override
this by placing a ? at the start of a filename/glob, indicating that it will be included if it exists, but is not depended on
for considering the data ready to use.

See also:

Datatype pimlico.datatypes. files.UnnamedFileCollection The datatype previously used for read-

ing in file collections, now being phased out to be replaced by this input reader.

This is an input module. It takes no pipeline inputs and is used to read in data

Inputs
No inputs
Outputs
Name | Type(s)
corpus | OutputType
54 Chapter 1. Contents

https://docs.python.org/2/library/glob.html

Pimlico Documentation, Release 0.8

Options

Name Description Type

files | (required) Comma-separated list of absolute paths to files to include in the collection. Paths | comma-

may include globs. Place a ‘?” at the start of a filename to indicate that it’s optional. You | separated
can specify a line range for the file by adding :X-Y’ to the end of the path, where X is the | list of (line
first line and Y the last to be included. Either X or Y may be left empty. (Line numbers are | range-
1-indexed.) limited) file
paths

ex- | A list of files to exclude. Specified in the same way as files (except without line ranges). | comma-
clude| This allows you to specify a glob in files and then exclude individual files from it (you can | separated list
use globs here too) of strings
en- | What to do in the case of invalid characters in the input while decoding (e.g. illegal utf-8 | string

cod- | chars). Select ‘strict’ (default), ‘ignore’, ‘replace’. See Python’s str.decode() for details
ing_errors

en- | Encoding to assume for input files. Default: utf8 string
cod-
ing

Package pimlico.modules.input.text_annotations

VRT annotated text files

Path pimlico.modules.input.text_annotations.vrt
Executable | yes

Input reader for VRT text collections (VeRticalized Text, as used by Korp:). Reads in files from arbitrary locations in
the same way as pimlico.modules. input.text.raw_text_files.

This is an input module. It takes no pipeline inputs and is used to read in data

Inputs

No inputs

Outputs

Name | Type(s)
corpus | VRTOutputType

1.3. Core Pimlico modules 55

https://www.kielipankki.fi/development/korp/corpus-input-format/#VRT_file_format

Pimlico Documentation, Release 0.8

Options

Name Description Type

files | (required) Comma-separated list of absolute paths to files to include in the collection. Paths | comma-

may include globs. Place a ‘?” at the start of a filename to indicate that it’s optional. You | separated
can specify a line range for the file by adding :X-Y’ to the end of the path, where X is the | list of (line
first line and Y the last to be included. Either X or Y may be left empty. (Line numbers are | range-
1-indexed.) limited) file
paths

ex- | A list of files to exclude. Specified in the same way as files (except without line ranges). | comma-
clude| This allows you to specify a glob in files and then exclude individual files from it (you can | separated list
use globs here too) of strings

en- | What to do in the case of invalid characters in the input while decoding (e.g. illegal utf-8 | string

cod- | chars). Select ‘strict’ (default), ‘ignore’, ‘replace’. See Python’s str.decode() for details
ing_errors

en- | Encoding to assume for input files. Default: utf8 string
cod-
ing

VRT annotated text files

Path pimlico.modules.input.text_annotations.vrt_text
Executable | yes

Input reader for VRT text collections (VeRticalized Text, as used by Korp:), just for reading the (tokenized) text
content, throwing away all the annotations.

Uses sentence tags to divide each text into sentences.
See also:
pimlico.modules. input.text_annotations.vrt: Reading VRT files with all their annotations

This is an input module. It takes no pipeline inputs and is used to read in data

Inputs

No inputs

Outputs

Name | Type(s)
corpus | VRTTextOutputType

56 Chapter 1. Contents

https://www.kielipankki.fi/development/korp/corpus-input-format/#VRT_file_format

Pimlico Documentation, Release 0.8

Options

Name Description Type

files | (required) Comma-separated list of absolute paths to files to include in the collection. Paths | comma-
may include globs. Place a ‘?” at the start of a filename to indicate that it’s optional. You | separated
can specify a line range for the file by adding :X-Y’ to the end of the path, where X is the | list of (line
first line and Y the last to be included. Either X or Y may be left empty. (Line numbers are | range-
1-indexed.) limited) file

paths

ex- | A list of files to exclude. Specified in the same way as files (except without line ranges). | comma-

clude| This allows you to specify a glob in files and then exclude individual files from it (you can | separated list
use globs here too) of strings

en- | What to do in the case of invalid characters in the input while decoding (e.g. illegal utf-8 | string

cod- | chars). Select ‘strict’ (default), ‘ignore’, ‘replace’. See Python’s str.decode() for details

ing_errors

en- | Encoding to assume for input files. Default: utf8 string

cod-

ing

XML documents

Path pimlico.modules.input.xml
Executable | yes

Input reader for XML file collections. Gigaword, for example, is stored in this way. The data retrieved from the files
is plain unicode text.

This is

an input module. It takes no pipeline inputs and is used to read in data

Inputs

No inputs

Outputs

Name | Type(s)
corpus | XMLOutputType

1.3. Core Pimlico modules

57

Pimlico Documentation, Release 0.8

Options
Name | Description Type
files (required) Comma-separated list of absolute paths to files to include in the collection. Paths | comma-
may include globs. Place a ‘7’ at the start of a filename to indicate that it’s optional separated

list of
strings

encod- | Encoding to assume for input files. Default: utf8 string

ing

docu- XML node type to extract documents from (default: ‘doc’) string

ment_nade_type
encod- | What to do in the case of invalid characters in the input while decoding (e.g. illegal utf-8 | string
ing_errorschars). Select ‘strict’ (default), ‘ignore’, ‘replace’. See Python’s str.decode() for details

fil- Comma-separated list of key=value constraints. If given, only docs with the attribute ‘key’ | comma-

ter_on_doonatteir doc node and the attribute value ‘value’ will be included separated
list of
strings

docu- Attribute of document nodes to get document name from. Use special value ‘filename’ to | string

ment_namesetire filename (without extensions) as a document name. In this case, if there’s more
than one doc in a file, an integer is appended to the doc name after the first doc. (Default:

‘filename’)
ex- A list of files to exclude. Specified in the same way as files (except without line ranges). | comma-
clude This allows you to specify a glob in files and then exclude individual files from it (you can | separated
use globs here too) list of

strings

1.3.8 Malt dependency parser

Wrapper around the Malt dependency parser and data format converters to support connections to other modules.

Annotated text to CoNLL dep parse input converter

Path pimlico.modules.malt.conll_parser_input
Executable | yes

Converts word-annotations to CoNLL format, ready for input into the Malt parser. Annotations must contain words
and POS tags. If they contain lemmas, all the better; otherwise the word will be repeated as the lemma.

Inputs

Name Type(s)
annotations | WordAnnotationCorpus with ‘word” and ‘pos’ fields

58 Chapter 1. Contents

http://www.maltparser.org/

Pimlico Documentation, Release 0.8

Outpu

Malt d

ts

Name

Type(s)

conll_data

CoNLLDependencyParseInputCorpus

ependency parser

Path

pimlico.modules.malt.parse

Executable | yes

Todo:

Document this module

Todo: Replace check_runtime_dependencies() with get_software_dependencies()

Inputs

Outpu

Name

Type

(s)

documents

TarredCorpus<CoNLLDependencyParseDocumentType>

ts

Name

Type(s)

parsed

CoNLLDependencyParseCorpus

Options

Nam

e Description

Type

mode]

| Filename of parsing model, or path to the file. If just a filename, assumed to be Malt models dir
(models/malt). Default: engmalt.linear-1.7.mco, which can be acquired by ‘make malt’ in the models

dir

string

no_gz

iy default, we gzip each document in the output data. If you don’t do this, the output can get very

large, since it’s quite a verbose output format

bool

1.3.9 OpenNLP modules

A collection of module types to wrap individual OpenNLP tools.

1.3. Core Pimlico modules

59

Pimlico Documentation, Release 0.8

OpenNLP coreference resolution

Path pimlico.modules.opennlp.coreference
Executable | yes

Todo: Document this module

Todo: Replace check_runtime_dependencies() with get_software_dependencies()

Use local config setting opennlp_memory to set the limit on Java heap memory for the OpenNLP processes. If
parallelizing, this limit is shared between the processes. That is, each OpenNLP worker will have a memory limit of
opennlp_memory / processes. That setting can use g, G, m, M, k and K, as in the Java setting.

Inputs
Name | Type(s)
parses | TarredCorpus<TreeStringsDocumentType>
Outputs
Name | Type(s)
coref CorefCorpus
Options
Namk Description Type

gzip | If True, each output, except annotations, for each document is gzipped. This can help reduce the | bool
storage occupied by e.g. parser or coref output. Default: False
model Coreference resolution model, full path or directory name. If a filename is given, it is expected to be | string
in the OpenNLP model directory (models/opennlp/). Default: ** (standard English opennlp model in
models/opennlp/)

read-| If True, pretty-print the JSON output, so it’s human-readable. Default: False bool
able
time-| Timeout in seconds for each individual coref resolution task. If this is exceeded, an InvalidDocument | int
out | is returned for that document

OpenNLP coreference resolution

Path pimlico.modules.opennlp.coreference_pipeline
Executable | yes

60 Chapter 1. Contents

Pimlico Documentation, Release 0.8

Runs the full coreference resolution pipeline using OpenNLP. This includes sentence splitting, tokenization, pos tag-
ging, parsing and coreference resolution. The results of all the stages are available in the output.

Use local config setting opennlp_memory to set the limit on Java heap memory for the OpenNLP processes. If
parallelizing, this limit is shared between the processes. That is, each OpenNLP worker will have a memory limit of
opennlp_memory / processes. That setting can use g, G, m, M, k and K, as in the Java setting.

Inputs
Name | Type(s)
text TarredCorpus<RawTextDocumentType>
Outputs
Name | Type(s)
coref CorefCorpus
Optional
Name Type(s)
tokenized | TokenizedCorpus
pos WordAnnotationCorpusWithPos
parse ConstituencyParseTreeCorpus
Options
Name | Description Type
gzip If True, each output, except annotations, for each document is gzipped. This can help reduce the | bool
storage occupied by e.g. parser or coref output. Default: False
to- Tokenization model. Specify a full path, or just a filename. If a filename is given it is expected to | string
ken_modebe in the opennlp model directory (models/opennlp/)
parse_moddrser model, full path or directory name. If a filename is given, it is expected to be in the | string
OpenNLP model directory (models/opennlp/)
time- Timeout in seconds for each individual coref resolution task. If this is exceeded, an InvalidDocu- | int
out ment is returned for that document
coref_modebreference resolution model, full path or directory name. If a filename is given, it is expected | string
to be in the OpenNLP model directory (models/opennlp/). Default: ** (standard English opennlp
model in models/opennlp/)
read- If True, pretty-print the JSON output, so it’s human-readable. Default: False bool
able
pos_modePOS tagger model, full path or filename. If a filename is given, it is expected to be in the opennlp | string
model directory (models/opennlp/)
sen- Sentence segmentation model. Specify a full path, or just a filename. If a filename is given it is | string
tence_mpdedpected to be in the opennlp model directory (models/opennlp/)

1.3. Core Pimlico modules

61

Pimlico Documentation, Release 0.8

OpenNLP NER

Named-entity recognition using OpenNLP’s tools.

Path

pimlico.modules.opennlp.ner

Executable

yes

By default, uses the pre-trained English model distributed with OpenNLP. If you want to use other models (e.g. for
other languages), download them from the OpenNLP website to the models dir (models/opennlp) and specify the
model name as an option.

Note that the default model is for identifying person names only. You can identify other name types by loading other
pre-trained OpenNLP NER models. Identification of multiple name types at the same time is not (yet) implemented.

Inputs
Name | Type(s)
text TarredCorpus<TokenizedDocumentTypelWord AnnotationsDocumentType>
Outputs
Name Type(s)
documents | SentenceSpansCorpus
Options
Name| Description Type
model| NER model, full path or filename. If a filename is given, it is expected to be in the opennlp model | string

directory (models/opennlp/)

OpenNLP constituency parser

Path

pimlico.modules.opennlp.parse

Executable

yes

Todo: Document this module

Inputs
Name Type(s)
documents | TarredCorpus<TokenizedDocumentType> or WordAnnotationCorpus with ‘word’ field
62 Chapter 1. Contents

Pimlico Documentation, Release 0.8

Outputs
Name | Type(s)
parser ConstituencyParseTreeCorpus
Options
Nameg Description Type

model| Parser model, full path or directory name. If a filename is given, it is expected to be in the OpenNLP | string
model directory (models/opennlp/)

OpenNLP POS-tagger

Path pimlico.modules.opennlp.pos
Executable | yes

Part-of-speech tagging using OpenNLP’s tools.

By default, uses the pre-trained English model distributed with OpenNLP. If you want to use other models (e.g. for
other languages), download them from the OpenNLP website to the models dir (models/opennlp) and specify the
model name as an option.

Inputs
Name | Type(s)
text TarredCorpus<TokenizedDocumentTypelWord AnnotationsDocumentType>
Outputs
Name Type(s)
documents | AddAnnotationField
Options
Name Description Type

model| POS tagger model, full path or filename. If a filename is given, it is expected to be in the opennlp | string
model directory (models/opennlp/)

OpenNLP tokenizer

Path pimlico.modules.opennlp.tokenize
Executable | yes

1.3. Core Pimlico modules 63

Pimlico Documentation, Release 0.8

Sentence splitting and tokenization using OpenNLP’s tools.

Inputs
Name | Type(s)
text TarredCorpus<RawTextDocumentType>
Outputs
Name Type(s)
documents | TokenizedCorpus
Options
Name Description Type
to- Tokenization model. Specify a full path, or just a filename. If a filename is given it is expected | string
ken_model| to be in the opennlp model directory (models/opennlp/)
tok- By default, sentence splitting is performed prior to tokenization. If tokenize_only is set, only | bool
enize_only| the tokenization step is executed
sen- Sentence segmentation model. Specify a full path, or just a filename. If a filename is given itis | string
tence_modglexpected to be in the opennlp model directory (models/opennlp/)

1.3.10 R interfaces

Modules for interfacing with the statistical programming language R. Currently, we provide just a simple way to pass
data from the output of another module into an R script and run it. In the future, it may be appropriate to add more
sophisticated interfaces, or expose R’s functionality in a more specialised way, integrating more closely with Pimlico’s
datatype system.

R script executor

Path pimlico.modules.r.script
Executable | yes

Simple interface to R that just involves running a given R script, first substituting in some paths from the pipeline,
making it easy to pass in data from the output of other modules.

Inputs

Name | Type(s)
sources | list of PimlicoDatatype

64 Chapter 1. Contents

https://www.r-project.org/

Pimlico Documentation, Release 0.8

Outputs

Name | Type(s)
output | NamedFile ()

Options

Namie Description

Type

script (required) Path to the script to be run. The script itself may include substitutions of the form *{{in-
putX}}’, which will be replaced with the absolute path to the data dir of the Xth input, and ‘{{out-
put}}’, which will be replaced with the absolute path to the output dir. The latter allows the script to
output things other than the output file, which always exists and contains the full script’s output

string

1.3.11 Regular expressions

Regex annotated text matcher

Path pimlico.modules.regex.annotated_text
Executable | yes

Todo: Document this module

Inputs

Name Type(s)
documents | TarredCorpus<WordAnnotationsDocumentType>

Outputs

Name Type(s)
documents | KeyValuelListCorpus

1.3. Core Pimlico modules

65

Pimlico Documentation, Release 0.8

Options

Name Description Type
expr | (required) An expression to determine what to search for in sentences. Consists of a sequence of | string
tokens, each matching one field in the corresponding token’s annotations in the data. These are
specified in the form field[x], where field is the name of a field supplied by the input data and x is
the value required of that field. If x ends in a, it will match prefixes: e.g. pos[NN]. If no field name
is given, the default ‘word’ is used. A token of the form ‘x=y’ matches the expression y as above
and assigns the matching word to the extracted variable x (to be output). You may also extract a
different annotation field by specifying x=f:y, where f is the field name to be extracted. E.g. ‘what
a=lemma:pos[NN*] lemma[come] with b=pos[NN*]" matches phrases like ‘what meals come with
fries’, producing ‘a=meal’ and ‘b=fries’. Both pos and lemma need to be fields in the dataset’. If you
give multiple whole expressions separated by Is, matches will be collected from all of them

1.3.12 Scikit-learn tools

Scikit-learn (‘sklearn’) provides easy-to-use implementations of a large number of machine-learning methods, based
on Numpy/Scipy.

You can build Numpy arrays from your corpus using the feature processing tools and then use them as
input to Scikit-learn’s tools using the modules in this package.

Sklearn matrix factorization

Path pimlico.modules.sklearn.matrix_factorization
Executable | yes

Provides a simple interface to Scikit-Learn’s various matrix factorization models.

Since they provide a consistent training interface, you can simply choose the class name of the method you want to
use and specify options relevant to that method in the opt ions option. For available options, take a look at the table
of parameters in the Scikit-Learn documentation for each class.

Inputs

Name | Type(s)
matrix | ScipySparseMatrix

Outputs

Name | Type(s)
w NumpyArray
h NumpyArray

66 Chapter 1. Contents

http://scikit-learn.org/stable/
http://scipy.org/
http://scikit-learn.org/stable/
http://scikit-learn.org/stable/modules/classes.html#module-sklearn.decomposition

Pimlico Documentation, Release 0.8

Options

Name Description Type

class| (required) Scikit-learn class to use to fit the matrix factorization. Should | ‘NMF’, ‘SparsePCA’, ‘Project-
be the name of a class in the package sklearn.decomposition that has | edGradientNMF’, ‘FastICA’,
a fit_transform() method and a components_ attribute. ~Supported | ‘FactorAnalysis’, ‘PCA’,
classes: NMF, SparsePCA, ProjectedGradientNMF, FastICA, Factor- | ‘RandomizedPCA’, ‘La-
Analysis, PCA, RandomizedPCA, LatentDirichletAllocation, Truncat- | tentDirichletAllocation’ or
edSVD ‘“TruncatedSVD’

op- | Options to pass into the constructor of the sklearn class, format- | string

tions| ted as a JSON dictionary (potentially without the {}s). E.g.
‘n_components=200, solver="cd”, tol=0.0001, max_iter=200’

1.3.13 Document-level text filters

Simple text filters that are applied at the document level, i.e. each document in a TarredCorpus is processed one at
a time. These perform relatively simple processing, not relying on external software or involving lengthy processing
times. They are therefore most often used using the £i1ter=T option, so that the processing is performed on the fly.

Such filters are needed sometimes just to convert before different datapoint formats.

Probably a good deal of these will be added in due course.

Text to character level

Path

pimlico.modules.text.char_tokenize

Executable

yes

Filter to treat text data as character-level tokenized data. This makes it simple to train character-level models, since
the output appears exactly like a tokenized document, where each token is a single character. You can then feed it into
any module that expects tokenized text.

Inputs
Name | Type(s)
corpus | TarredCorpus<TextDocumentType>
Outputs
Name | Type(s)
corpus | CharacterTokenizedDocumentTypeTarredCorpus

Normalize tokenized text

Path

pimlico.modules.text.normalize

Executable

yes

1.3. Core Pimlico modules

67

Pimlico

Documentation, Release 0.8

Perform t

ext normalization on tokenized documents.

Currently, this includes only case normalization (to upper or lower case). In the future, more normalization operations

may be added.
Inputs
Name | Type(s)
corpus | TarredCorpus<TokenizedDocumentType>
Outputs
Name | Type(s)
corpus | TokenizedCorpus
Options
Name Description Type
case | Transform all text to upper or lower case. Choose from ‘upper’ or ‘lower’, or leave blank | ‘upper’,
to not perform transformation ‘lower’ or

Simple tokenization

Tokenize

Path pimlico.modules.text.simple_tokenize
Executable | yes

raw text using simple splitting.

This is useful where either you don’t mind about the quality of the tokenization and just want to test something quickly,
or text is actually already tokenized, but stored as a raw text datatype.

If you wa

nt to do proper tokenization, consider either the CoreNLP or OpenNLP core modules.

Inputs
Name | Type(s)
corpus | TarredCorpus<TextDocumentType>
Outputs
Name | Type(s)
corpus | TokenizedDocumentTypeTarredCorpus
68 Chapter 1. Contents

Pimlico Documentation, Release 0.8

Options

Name | Description Type
splitter | Character or string to split on. Default: space | <type ‘unicode’>

Tokenized text to text

Path pimlico.modules.text.untokenize
Executable | yes

Filter to take tokenized text and join it together to make raw text.

This module shouldn’t be necessary and will be removed later. For the time being, it’s here as a workaround for [this
problem](https://github.com/markgw/pimlico/issues/ I #issuecomment-383620759), until it’s solved in the datatype re-
design.

Tokenized text is a subtype of text, so theoretically it should be acceptable to modules that expect plain text (and is
considered so by typechecking). But it provides an incompatible data structure, so things go bad if you use it like that.

Inputs
Name | Type(s)
corpus | TarredCorpus<TokenizedDocumentType>
Outputs
Name | Type(s)
corpus | TextDocumentTypeTarredCorpus
Options
Name Description Type
sentence_joiner | String to join lines/sentences on. (Default: linebreak) | <type ‘unicode’>
joiner String to join words on. (Default: space) <type ‘unicode’>

1.3.14 General utilities

General utilities for things like filesystem manipulation.

Module output alias

Path pimlico.modules.utility.alias
Executable | no

1.3. Core Pimlico modules 69

https://github.com/markgw/pimlico/issues/1#issuecomment-383620759

Pimlico Documentation, Release 0.8

Alias a datatype coming from the output of another module.

Used to assign a handy identifier to the output of a module, so that we can just refer to this alias module later in the
pipeline and use its default output. This can help make for a more readable pipeline config.

For example, say we use spl it to split a dataset into two random subsets. The two splits can be accessed by referring
to the two outputs of that module: split_module.setl and split_module.set2. However, it’s easy to lose track of what

these splits are supposed to be used for, so we might want to give them names:

[split_module]
type=pimlico.modules.corpora.split
setl_size=0.2

[test_set]
type=pimlico.modules.utility.alias
input=split_module.setl

[training set]
type=pimlico.modules.utility.alias
input=split_module.set2

[training_ routine]

type=...
input_corpus=training_set

Note the difference between using this module and using the special alias module type. The alias type creates an alias
for a whole module, allowing you to refer to all of its outputs, inherit its settings, and anything else you could do with
the original module name. This module, however, provides an alias for exactly one output of a module and generates

a module instance of its own in the pipeline (albeit a filter module).

This is a filter module. It is not executable, so won’t appear in a pipeline’s list of modules that can be run. It produces

its output for the next module on the fly when the next module needs it.

Inputs
Name | Type(s)
input PimlicoDatatype
Outputs
Name | Type(s)
output | same as input corpus
Copy file
Path pimlico.modules.utility.copy_file
Executable | yes
Copy a file

Simple utility for copying a file (which presumably comes from the output of another module) into a particular location.

Useful for collecting together final output at the end of a pipeline.

70

Chapter 1. Contents

Pimlico Documentation, Release 0.8

Inputs
Name | Type(s)
source | 1istof File
Outputs
Name Type(s)
documents | TarredCorpus
Options
Name Description Type
tar- Name to rename the target file to. If not given, it will have the same name as the source file. | string
get_name| Ignored if there’s more than one input file
tar- (required) Path to directory into which the file should be copied. Will be created if it doesn’t | string
get_dir exist
1.3.15 Visualization tools
Modules for plotting and suchlike
Bar chart plotter
Path pimlico.modules.visualization.bar_chart
Executable | yes
Inputs
Name | Type(s)
values | 1ist of NumericResult
Outputs
Name | Type(s)
plot PlotOutput
71

1.3. Core Pimlico modules

Pimlico Documentation, Release 0.8

Embedding space plotter

Path
Executable

pimlico.modules.visualization.embeddings_plot
yes

Plot vectors from embeddings, trained by some other module, in a 2D space using a MDS reduction and Matplotlib.

They might, for example, come from pimlico.modules.embeddings.word2vec. The embeddings are read
in using Pimlico’s generic word embedding storage type.

Uses scikit-learn to perform the MDS/TSNE reduction.

Inputs
Name | Type(s)
vectors | 1ist of Embeddings
Outputs
Name | Type(s)
plot PlotOutput
Options
Name Description Type
skip | Number of most frequent words to skip, taking the next most frequent after these. Default: | int
0
met- | Distance metric to use. Choose from ‘cosine’, ‘euclidean’, ‘manhattan’. Default: ‘cosine’ ‘cosine’, ‘eu-
ric clidean’ or
‘manhattan’
re- | Dimensionality reduction technique to use to project to 2D. Available: mds (Multi- | ‘mds’ or
duc- | dimensional Scaling), tsne (t-distributed Stochastic Neighbor Embedding). Default: mds ‘tsne’
tion
col- | List of colours to use for different embedding sets. Should be a list of matplotlib colour | comma-
ors | strings, one for each embedding set given in input_vectors separated list
of strings
cmap Mapping from word prefixes to matplotlib plotting colours. Every word beginning with the | JSON string
given prefix has the prefix removed and is plotted in the corresponding colour. Specify as a
JSON dictionary mapping prefix strings to colour strings
words Number of most frequent words to plot. Default: 50 int

1.4

Command-line interface

The main Pimlico command-line interface (usually accessed via pimlico.sh in your project root) provides subcom-
mands to perform different operations. Call it like so, using one of the subcommands documented below to access
particular functionality:

72 Chapter 1. Contents

Pimlico Documentation, Release 0.8

./pimlico.sh <config-file> [general options...] <subcommand> [subcommand args/options]

The commands you are likely to use most often are: status, run, reset and maybe browse.

For a reference for each command’s options, see the command-line documentation: . /pimlico.sh —--help, for
a general reference and . /pimlico.sh <config_file> <command> —--help for a specific subcommand’s
reference.

Below is a more detailed guide for each subcommand, including all of the documentation available via the command
line.

browse View the data output by a module

clean Remove all module output directories that do not correspond to a module in the pipeline
deps List information about software dependencies: whether they’re available, versions, etc
dump Dump the entire available output data from a given pipeline module to a tarball

email Test email settings and try sending an email using them

inputs Show the (expected) locations of the inputs of a given module

install Install missing module library dependencies

load Load a module’s output data from a tarball previously created by the dump command
longstore Move a particular module’s output from the short-term store to the long-term store
newmodule | Create a new module type

output Show the location where the given module’s output data will be (or has been) stored
python Load the pipeline config and enter a Python interpreter with access to it in the environment
reset Delete any output from the given module and restore it to unexecuted state

run Execute an individual pipeline module, or a sequence

shell Open a shell to give access to the data output by a module

status Output a module execution schedule for the pipeline and execution status for every module
unlock Forcibly remove an execution lock from a module

variants List the available variants of a pipeline config

visualize Comming soon. . . visualize the pipeline in a pretty way

1.4.1 status

Command-line tool subcommand

Output a module execution schedule for the pipeline and execution status for every module.

Usage:
pimlico.sh [...] status [module_name] [-h] [--all] [--short] [--history] [--deps-of_
—DEPS_OF] [-—no-color]

Positional arguments

Arg Description

[module Optioadlly specify a module name (or number). More detailed status information will be outut for
this module. Alternatively, use this arg to limit the modules whose status will be output to a range by
specifying ‘A...B’, where A and B are module names or numbers

1.4. Command-line interface 73

Pimlico Documentation, Release 0.8

Options

Option Description

-—all, Show all modules defined in the pipeline, not just those that can be executed

-a

——-short,| Use a brief format when showing the full pipeline’s status. Only applies when module names are not

-s specified. This is useful with very large pipelines, where you just want a compact overview of the
status

—-historyWhen a module name is given, even more detailed output is given, including the full execution history
-1 of the module
—-—deps-ofRestrict to showing only the named/numbered module and any that are (transitive) dependencies of it.

-d That is, show the whole tree of modules that lead through the pipeline to the given module
——no—-cold?on’t include terminal color characters, even if the terminal appears to support them. This can be
--nc useful if the automatic detection of color terminals doesn’t work and the status command displays lots

of horrible escape characters

1.4.2 variants

Command-line tool subcommand
List the available variants of a pipeline config.

Usage:

pimlico.sh [...] variants [-h]

1.4.3 run

Command-line tool subcommand

Main command for executing Pimlico modules from the command line run command.

Usage:
pimlico.sh [...] run [modules [modules ...]] [-h] [-—force-rerun] [-—-all-deps] [——
—all] [--dry-run] [--step] [-—preliminary] [--exit-on-error] [--email {modend,end}]

Positional arguments

Arg Description

[moduleg The name (or number) of the module to run. To run a stage from a multi-stage module, use ‘mod-

[modulegule:stage’. Use ‘status’ command to see available modules. Use ‘module:?’ or ‘module:help’ to list
.11 available stages. If not given, defaults to next incomplete module that has all its inputs ready. You may

give multiple modules, in which case they will be executed in the order specified

74 Chapter 1. Contents

Pimlico Documentation, Release 0.8

Options

Option Description

——force-r&oree,running the module(s), even if it’s already been run to completion

-f

——all-depdf the given module(s) has dependent modules that have not been completed, executed them first.

-a This allows you to specify a module late in the pipeline and execute the full pipeline leading to that
point

--all Run all currently unexecuted modules that have their inputs ready, or will have by the time previous
modules are run. (List of modules will be ignored)

—-—dry-run,Perform all pre-execution checks, but don’t actually run the module(s)

—-—dry,

——check

-—step Enabled super-verbose debugging mode, which steps through a module’s processing outputting a lot
of information and allowing you to control the output as it goes. Useful for working out what’s going
on inside a module if it’s mysteriously not producing the output you expected

——prelimfiPerform a preliminary run of any modules that take multiple datasets into one of their inputs. This

--pre means that we will run the module even if not all the datasets are yet available (but at least one is)
and mark it as preliminarily completed

——exit—-ontfamrerror is encountered while executing a module that causes the whole module execution to fail,

-e output the error and exit. By default, Pimlico will send error output to a file (or print it in debug
mode) and continue to execute the next module that can be executed, if any

——email | Send email notifications when processing is complete, including information about the outcome.

Choose from: ‘modend’ (send notification after module execution if it fails and a summary at the end
of everything), ‘end’ (send only the final summary). Email sending must be configured: see ‘email’
command to test

1.4.4 browse

Command-line tool subcommand

View the data output by a module.

Usage:

pimlico.sh

[...] browse module_name [output_name] [-h] [--raw] [--skip-invalid] [-—

—~formatter FORMATTER]

Positional arguments

Arg

Description

module_n

The name (or number) of the module whose output to look at. Use ‘module:stage’ for multi-
stage modules

ame

[output_name]

The name of the output from the module to browse. If blank, load the default output

1.4. Command-line interface

75

Pimlico Documentation, Release 0.8

Options

Option | Description

——raw, | Don’t parse the data using the output datatype (i.e. just read the raw text). If not set, we output the result

-r of applying unicode() to the parsed data structure, or a custom formatting if the datatype loaded defines
one

——skip[-Skipavedinvalid documents, instead of showing the error that caused them to be invalid

——formaFuldy qualified class name of a subclass of DocumentBrowserFormatter to use to determine what to

-f output for each document. If specified, —raw is ignored. You may also choose from the named standard
formatters for the datatype in question. Use ‘-f help’ to see a list of available formatters

1.4.5 shell

Command-line tool subcommand

Open a shell to give access to the data output by a module.

Usage:

pimlico.

sh [...] shell module_name [output_name] [-h]

Positional arguments

Arg

Description

module_name

The name (or number) of the module whose output to look at

[output_name]

The name of the output from the module to browse. If blank, load the default output

1.4.6 python

Command-line tool subcommand

Load the pipeline config and enter a Python interpreter with access to it in the environment.

Usage:
pimlico.sh [...] python [script] [-h] [-1]
Positional arguments
Arg Description
[script] | Script file to execute. Omit to enter interpreter
Options
Option | Description
-i Enter interactive shell after running script
76 Chapter 1. Contents

Pimlico Documentation, Release 0.8

1.4.7 reset

Command-line tool subcommand
Delete any output from the given module and restore it to unexecuted state.

Usage:

pimlico.sh [...] reset [modules [modules ...]] [-h] [-n]

Positional arguments

Arg Description
[modules [modules ... The names (or numbers) of the modules to reset, or ‘all’ to reset the whole
11 pipeline

Options
Option Description
-n, Only reset the state of this module, even if it has dependent modules in an executed state, which
—-—no—-depg could be invalidated by resetting and re-running this one

1.4.8 clean

Command-line tool subcommand
Cleans up module output directories that have got left behind.

Often, when developing a pipeline incrementally, you try out some modules, but then remove them, or rename them to
something else. The directory in the Pimlico output store that was created to contain their metadata, status and output
data is then left behind and no longer associated with any module.

Run this command to check all storage locations for such directories. If it finds any, it prompts you to confirm before
deleting them. (If there are things in the list that don’t look like they were left behind by the sort of things mentioned
above, don’t delete them! I don’t want you to lose your precious output data if I’ve made a mistake in this command.)

Note that the operation of this command is specific to the loaded pipeline variant. If you have multiple variants, make
sure to select the one you want to clean with the general —variant option.

Usage:

pimlico.sh [...] clean [-h]

1.4.9 longstore

Command-line tool subcommand

Move a particular module’s output from the short-term store to the long-term store. It will still be found here by input
readers. You might want to do this if your long-term store is bigger, to keep down the short-term store size.

Usage:

1.4. Command-line interface 77

Pimlico Documentation, Release 0.8

pimlico.sh [...] longstore [modules [modules ...]] [-h]

Positional arguments

Arg Description
[modules [modules ...]] | The names (or numbers) of the module whose output to move

1.4.10 unlock

Command-line tool subcommand

Forcibly remove an execution lock from a module. If a lock has ended up getting left on when execution exited
prematurely, use this to remove it.

When a module starts running, it is locked to avoid making a mess of your output data by running the same module
from another terminal, or some other silly mistake (I know, for some of us this sort of behaviour is frustratingly
common).

Usually shouldn’t be necessary, even if there’s an error during execution, since the module should be unlocked when
Pimlico exits, but occasionally (e.g. if you have to forcibly kill Pimlico during execution) the lock gets left on.

Usage:

pimlico.sh [...] unlock module_name [-h]

Positional arguments

Arg Description
module_name | The name (or number) of the module to unlock

1.4.11 dump

Command-line tool subcommand

Dump the entire available output data from a given pipeline module to a tarball, so that it can easily be loaded into the
same pipeline on another system. This is primarily to support spreading the execution of a pipeline between multiple
machines, so that the output from a module can easily be transferred and loaded into a pipeline.

Dump to a tarball using this command, transfer the file between machines and then run the load command to import it
there.

See also:

Running one pipeline on multiple computers: for a more detailed guide to transferring data across servers.

Usage:

pimlico.sh [...] dump [modules [modules ...]] [-h] [-—-output OUTPUT]

78 Chapter 1. Contents

Pimlico Documentation, Release 0.8

Positional arguments

Arg Description
[modules [modules | Names or numbers of modules whose data to dump. If multiple are given, a separate
.11 file will be dumped for each
Options
Option Description

—-—output, —o | Path to directory to output to. Defaults to the current user’s home directory

1.4.12 load

Command-line tool subcommand

Load the output data for a given pipeline module from a tarball previously created by the dump command (typically
on another machine). This is primarily to support spreading the execution of a pipeline between multiple machines, so
that the output from a module can easily be transferred and loaded into a pipeline.

Dump to a tarball using the dump command, transfer the file between machines and then run this command to import
it there.

See also:
Running one pipeline on multiple computers: for a more detailed guide to transferring data across servers.

Usage:

pimlico.sh [...] load [paths [paths ...]] [-h] [-—force-overwrite]

Positional arguments

Arg Description
[paths [paths ...]1]1 | Pathstodump files (tarballs) to load into the pipeline
Options
Option Description
—--force-overwrlftdata already exists for a module being imported, overwrite without asking. By default, the
-f user will be prompted to check whether they want to overwrite

1.4.13 deps

Command-line tool subcommand
Output information about module dependencies.

Usage:

1.4. Command-line interface 79

Pimlico Documentation, Release 0.8

pimlico.sh [...] deps [modules [modules ...]] [-h]

Positional arguments

Arg Description

[modules Check dependencies for named modules and install any that are automatically installable.
[modules ... Use ‘all’ to install dependencies for all modules

11

1.4.14 install

Command-line tool subcommand
Install missing dependencies.

Usage:

pimlico.sh [...] install [modules [modules ...]] [-h] [-—-trust-downloaded]

Positional arguments

Arg Description
[modules Check dependencies for named modules and install any that are automatically installable.
[modules ... Use ‘all’ to install dependencies for all modules
11
Options
Option Description
——trust-dowf dwarthile file to be downloaded is found to be in the lib dir already, trust that it is the file we’re
-t after. By default, we only reuse archives we’ve just downloaded, so we know they came from the
right URL, avoiding accidental name clashes

1.4.15 inputs

Command-line tool subcommand

Show the locations of the inputs of a given module. If the input datasets are available, their actual location is shown.
Otherwise, all directories in which the data is being checked for are shown.

Usage:

pimlico.sh [...] inputs module_name [-h]

80 Chapter 1. Contents

Pimlico Documentation, Release 0.8

Positional arguments

Arg Description
module_name | The name (or number) of the module to display input locations for

1.4.16 output

Command-line tool subcommand

Show the location where the given module’s output data will be (or has been) stored.

Usage:

pimlico.sh [...] output module_name [-h]

Positional arguments

Arg Description
module_name | The name (or number) of the module to display input locations for

1.4.17 newmodule

Command-line tool subcommand

Interactive tool to create a new module type, generating a skeleton for the module’s code. Currently only works for
certain module types. May be extended in future to help with creating a broader range of sorts of modules.

Usage:

pimlico.sh [...] newmodule [-h]

1.4.18 visualize

Command-line tool subcommand

(Not yet fully implemented!) Visualize the pipeline, with status information for modules.

Usage:

pimlico.sh [...] visualize [-h] [-—-all]

Options

Option Description
-—all, —a | Show all modules defined in the pipeline, not just those that can be executed

1.4. Command-line interface 81

Pimlico Documentation, Release 0.8

1.4.19 email

Command-line tool subcommand
Test email settings and try sending an email using them.

Usage:

’pimlico.sh [...] email [-h]

1.5 API Documentation

API documentation for the main Pimlico codebase, excluding the built-in Pimlico module types.

1.5.1 pimlico package
Subpackages

pimlico.cli package

Subpackages

pimlico.cli.browser package
Submodules
pimlico.cli.orowser.formatter module

The command-line iterable corpus browser displays one document at a time. It can display the raw data from the
corpus files, which sometimes is sufficiently human-readable to not need any special formatting. It can also parse the
data using its datatype and output text either from the datatype’s standard unicode representation or, if the document
datatype provides it, a special browser formatting of the data.

When viewing output data, particularly during debugging of modules, it can be useful to provide special formatting
routines to the browser, rather than using or overriding the datatype’s standard formatting methods. For example, you
might want to pull out specific attributes for each document to get an overview of what’s coming out.

The browser command accepts a command-line option that specifies a Python class to format the data. This class
should be a subclass of :class:~pimlico.cli.browser.formatter. DocumentBrowserFormatter that accepts a datatype com-
patible with the datatype being browsed and provides a method to format each document. You can write these in your
custom code and refer to them by their fully qualified class name.

class DocumentBrowserFormatter (corpus)
Bases: object

Base class for formatters used to post-process documents for display in the iterable corpus browser.

DATATYPE
aliasof pimlico.datatypes.documents.DataPointType

RAW_INPUT = False

82 Chapter 1. Contents

Pimlico Documentation, Release 0.8

format_document (doc)
Format a single document and return the result as a string (or unicode, but it will be converted to ASCII
for display).

Must be overridden by subclasses.

filter document (doc)
Each doc is passed through this function directly after being read from the corpus. If None is returned,
the doc is skipped. Otherwise, the result is used instead of the doc data. The default implementation does
nothing.

class DefaultFormatter (corpus, raw_data=False)
Bases: pimlico.cli.browser.formatter.DocumentBrowserFormatter

Generic implementation of a browser formatter that’s used if no other formatter is given.

DATATYPE
aliasof pimlico.datatypes.base.IterableCorpus

format_document (doc)
Format a single document and return the result as a string (or unicode, but it will be converted to ASCII
for display).

Must be overridden by subclasses.

class InvalidDocumentFormatter (corpus)
Bases: pimlico.cli.browser.formatter.DocumentBrowserFormatter

Formatter that skips over all docs other than invalid results. Uses standard formatting for InvalidDocument
information.

DATATYPE
aliasof pimlico.datatypes.base.IterableCorpus

format_document (doc)
Format a single document and return the result as a string (or unicode, but it will be converted to ASCII
for display).

Must be overridden by subclasses.

filter_ document (doc)
Each doc is passed through this function directly after being read from the corpus. If None is returned,
the doc is skipped. Otherwise, the result is used instead of the doc data. The default implementation does
nothing.

typecheck_formatter (formatted_doc_type, formatter_cls)
Check that a document type is compatible with a particular formatter.

load_formatter (dataset, formatter_name=None, parse=True)
Load a formatter specified by its fully qualified Python class name. If None, loads the default formatter. You
may also specify a formatter by name, choosing from one of the standard ones that the formatted datatype gives.

Parameters
e formatter_name — class name, or class
e dataset - dataset that will be formatted
* parse — only used if the default formatter is loaded, determines raw_data (= not parse)

Returns instantiated formatter

1.5. API Documentation 83

Pimlico Documentation, Release 0.8

pimlico.cli.browser.tool module

Tool for browsing datasets, reading from the data output by pipeline modules.

browse_cmd (pipeline, opts)
Command for main Pimlico CLI

browse_data (data, formatter, parse=False, skip_invalid=False)

class CorpusState (corpus)
Bases: object

Keep track of which document we’re on.
next_document ()
skip (n)

class InputDialog (text, input_edit)
Bases: urwid.widget .WidgetWrap

A dialog that appears with an input
signals = ['close', 'cancel']
keypress (size, k)

class MessageDialog (text, default=None)
Bases: urwid.widget .WidgetWrap

A dialog that appears with a message

class InputPopupLauncher (original_widget, text, input_edit, callback=None)
Bases: urwid.wimp.PopUpLauncher

create_pop_up ()
Subclass must override this method and return a widget to be used for the pop-up. This method is called
once each time the pop-up is opened.

get_pop_up_parameters ()
Subclass must override this method and have it return a dict, eg:

{‘left’:0, ‘top’:1, ‘overlay_width’:30, ‘overlay_height’:4}

This method is called each time this widget is rendered.
skip_popup_launcher (original_widget, text, default=None, callback=None)
save_popup_launcher (original_widget, text, default=None, callback=None)

class MessagePopupLlauncher (original_widget, text)
Bases: urwid.wimp.PopUpLauncher

create_pop_up ()
Subclass must override this method and return a widget to be used for the pop-up. This method is called
once each time the pop-up is opened.

get_pop_up_parameters ()
Subclass must override this method and have it return a dict, eg:

{‘left’:0, ‘top’:1, ‘overlay_width’:30, ‘overlay_height’:4}

This method is called each time this widget is rendered.

84 Chapter 1. Contents

Pimlico Documentation, Release 0.8

Module contents
pimlico.cli.debug package
Submodules
pimlico.cli.debug.stepper module

class Stepper
Bases: object

Type that stores the state of the stepping process. This allows information and parameters to be passed around
through the process and updated as we go. For example, if particular type of output is disabled by the user, a
parameter can be updated here so we know not to output it later.

enable_step_for_ pipeline (pipeline)
Prepares a pipeline to run in step mode, modifying modules and wrapping methods to supply the extra function-
ality.

This approach means that we don’t have to consume extra computation time checking whether step mode is
enabled during normal runs.

Parameters pipeline - instance of PipelineConfig

instantiate_output_datatype_decorator (instantiate_output_datatype, —module_name, out-
put_names, stepper)

wrap_tarred_corpus (dtype, module_name, output_name, stepper)
archive_iter_decorator (archive_iter, module_name, output_name, stepper)

get_input_decorator (get_input, module_name, stepper)
Decorator to wrap a module info’s get_input() method so when know where inputs are being used.

option_message (message_lines, stepper, options=None, stack_trace_option=True, category=None)

Module contents

Extra-verbose debugging facility

Tools for very slowly and verbosely stepping through the processing that a given module does to debug it.
Enabled using the —step switch to the run command.

fmt_frame_info (info)

output_stack_trace (frame=None)

pimlico.cli.shell package
Submodules
pimlico.cli.shell.base module

class ShellCommand
Bases: object

1.5. API Documentation 85

Pimlico Documentation, Release 0.8

Base class used to provide commands for exploring a particular datatype. A basic set of commands is pro-
vided for all datatypes, but specific datatype classes may provide their own, by overriding the shell_commands

attribute.

commands = []

help_text = None
execute (shell, *args, **kwargs)

class DataShell (data, commands, *args, **kwargs)
Bases: cmd . Cmd

Terminal shell for querying datatypes.
prompt = '>>> '
get_names ()

do_EOF (line)
Exits the shell

preloop ()
postloop ()

emptyline ()
Don’t repeat the last command (default): ignore empty lines

default (line)

We use this to handle commands that can’t be handled using the do_ pattern. Also handles the default

fallback, which is to execute Python.
cmdloop (intro=None)

exception ShellError
Bases: exceptions.Exception

pimlico.cli.shell.commands module

Basic set of shell commands that are always available.

class MetadataCmd
Bases: pimlico.cli.shell.base.ShellCommand

commands = ['metadata']
help_text = "Display the loaded dataset's metadata"
execute (shell, *args, **kwargs)

class PythonCmd
Bases: pimlico.cli.shell.base.ShellCommand

commands = ['python', 'py'l]
help_text = "Run a Python interpreter using the current environment,

execute (shell, *args, **kwargs)

including import

86 Chapter 1. Contents

Pimlico Documentation, Release 0.8

pimlico.cli.shell.runner module

class ShellCLICmd
Bases: pimlico.cli.subcommands.PimlicoCLISubcommand

command_name = 'shell'

command_help = 'Open a shell to give access to the data output by a module'’
add_arguments (parser)

run_command (pipeline, opts)

launch_shell (data)
Starts a shell to view and query the given datatype instance.

Module contents
Submodules
pimlico.cli.check module

class InstallCmd
Bases: pimlico.cli.subcommands.PimlicoCLISubcommand

Install missing dependencies.

command name = 'install'

command_help = 'Install missing module library dependencies'
add_arguments (parser)

run_command (pipeline, opts)

class DepsCmd
Bases: pimlico.cli.subcommands.PimlicoCLISubcommand

Output information about module dependencies.

command_name = 'deps'

command_help = "List information about software dependencies: whether they're availab
add_arguments (parser)

run_command (pipeline, opts)

pimlico.cli.clean module

class CleanCmd
Bases: pimlico.cli.subcommands.PimlicoCLISubcommand

Cleans up module output directories that have got left behind.

Often, when developing a pipeline incrementally, you try out some modules, but then remove them, or rename
them to something else. The directory in the Pimlico output store that was created to contain their metadata,
status and output data is then left behind and no longer associated with any module.

1.5. API Documentation 87

Pimlico Documentation, Release 0.8

Run this command to check all storage locations for such directories. If it finds any, it prompts you to confirm
before deleting them. (If there are things in the list that don’t look like they were left behind by the sort of things
mentioned above, don’t delete them! I don’t want you to lose your precious output data if I’ve made a mistake
in this command.)

Note that the operation of this command is specific to the loaded pipeline variant. If you have multiple variants,
make sure to select the one you want to clean with the general —variant option.

command_name = 'clean'
command_help = 'Remove all module directories that do not correspond to a module in th
command_desc = 'Remove all module output directories that do not correspond to a modul

run_command (pipeline, opts)

pimlico.cli.loaddump module

class DumpCmd

Bases: pimlico.cli.subcommands.PimlicoCLISubcommand

Dump the entire available output data from a given pipeline module to a tarball, so that it can easily be loaded into
the same pipeline on another system. This is primarily to support spreading the execution of a pipeline between
multiple machines, so that the output from a module can easily be transferred and loaded into a pipeline.

Dump to a tarball using this command, transfer the file between machines and then run the load command to
import it there.

See also:

Running one pipeline on multiple computers: for a more detailed guide to transferring data across servers

command_name = 'dump'
command_help = 'Dump the entire available output data from a given pipeline module to .
command_desc = 'Dump the entire available output data from a given pipeline module to

add_arguments (parser)

run_command (pipeline, opts)

class LoadCmd

Bases: pimlico.cli.subcommands.PimlicoCLISubcommand

Load the output data for a given pipeline module from a tarball previously created by the dump command
(typically on another machine). This is primarily to support spreading the execution of a pipeline between
multiple machines, so that the output from a module can easily be transferred and loaded into a pipeline.

Dump to a tarball using the dump command, transfer the file between machines and then run this command to
import it there.

See also:

Running one pipeline on multiple computers: for a more detailed guide to transferring data across servers

command name = 'load'
command_help = "Load a module's output data from a tarball previously created by the d
command_desc = "Load a module's output data from a tarball previously created by the d

add_arguments (parser)

run_command (pipeline, opts)

88

Chapter 1. Contents

Pimlico Documentation, Release 0.8

pimlico.cli.locations module

class InputsCmd
Bases: pimlico.cli.subcommands.PimlicoCLISubcommand

command_name 'inputs’'

command_help 'Show the locations of the inputs of a given module. If the input datas:

command_desc 'Show the (expected) locations of the inputs of a given module'’
add_arguments (parser)
run_command (pipeline, opts)

class OutputCmd
Bases: pimlico.cli.subcommands.PimlicoCLISubcommand

command_name = 'output'
command_help = "Show the location where the given module's output data will be (or has
add_arguments (parser)

run_command (pipeline, opts)

pimlico.cli.main module

Main command-line script for running Pimlico, typically called from pimlico.sh.
Provides access to many subcommands, acting as the primary interface to Pimlico’s functionality.

class VariantsCmd
Bases: pimlico.cli.subcommands.PimlicoCLISubcommand

command_name = 'variants'

command_help = 'List the available variants of a pipeline config’
add_arguments (parser)

run_command (pipeline, opts)

class LongStoreCmd
Bases: pimlico.cli.subcommands.PimlicoCLISubcommand

command name = 'longstore'
command_help = "Move a particular module's output from the short-term store to the lon
command_desc = "Move a particular module's output from the short-term store to the lon

add_arguments (parser)
run_command (pipeline, opts)

class UnlockCmd
Bases: pimlico.cli.subcommands.PimlicoCLISubcommand

Forcibly remove an execution lock from a module. If a lock has ended up getting left on when execution exited
prematurely, use this to remove it.

When a module starts running, it is locked to avoid making a mess of your output data by running the same
module from another terminal, or some other silly mistake (I know, for some of us this sort of behaviour is
frustratingly common).

1.5. API Documentation 89

Pimlico Documentation, Release 0.8

Usually shouldn’t be necessary, even if there’s an error during execution, since the module should be unlocked
when Pimlico exits, but occasionally (e.g. if you have to forcibly kill Pimlico during execution) the lock gets
left on.

command name = 'unlock'
command_help = "Forcibly remove an execution lock from a module. If a lock has ended u
command_desc = 'Forcibly remove an execution lock from a module'’

add_arguments (parser)

run_command (pipeline, opts)

class BrowseCmd

Bases: pimlico.cli.subcommands.PimlicoCLISubcommand
command_name = 'browse'

command_help = 'View the data output by a module'’
add_arguments (parser)

run_command (pipeline, opts)

class VisualizeCmd

Bases: pimlico.cli.subcommands.PimlicoCLISubcommand

command name = 'visualize'

command_help ' (Not yet fully implemented!) Visualize the pipeline, with status infonm
command_desc = 'Comming soon...visualize the pipeline in a pretty way'
add_arguments (parser)

run_command (pipeline, opts)

pimlico.cli.newmodule module

class NewModuleCmd

Bases: pimlico.cli.subcommands.PimlicoCLISubcommand

command name = 'newmodule'
command_help = "Interactive tool to create a new module type, generating a skeleton fo
command_desc = 'Create a new module type'

run_command (pipeline, opts)

ask (prompt, strip_space=True)

pimlico.cli.pyshell module

class PimlicoPythonShellContext

Bases: object

A class used as a static global data structure to provide access to the loaded pipeline when running the Pimlico
Python shell command.

This should never be used in any other context to pass around loaded pipelines or other global data. We don’t
do that sort of thing.

90

Chapter 1. Contents

Pimlico Documentation, Release 0.8

class PythonShellCmd
Bases: pimlico.cli.subcommands.PimlicoCLISubcommand

command_name = 'python'

command_help = 'Load the pipeline config and enter a Python interpreter with access to
add_arguments (parser)

run_command (pipeline, opts)

get_pipeline ()
This function may be used in scripts that are expected to be run exclusively from the Pimlico Python shell
command (python) to get hold of the pipeline that was specified on the command line and loaded when the
shell was started.

exception ShellContextError
Bases: exceptions.Exception

pimlico.cli.reset module

class ResetCmd
Bases: pimlico.cli.subcommands.PimlicoCLISubcommand

command name = 'reset'
command_help = 'Delete any output from the given module and restore it to unexecuted s
add_arguments (parser)

run_command (pipeline, opts)

pimlico.cli.run module

class RunCmd
Bases: pimlico.cli.subcommands.PimlicoCLISubcommand

Main command for executing Pimlico modules from the command line run command.
command_name = 'run'

command_help = 'Execute an individual pipeline module, or a sequence'
add_arguments (parser)

run_command (pipeline, opts)

pimlico.cli.status module

class StatusCmd
Bases: pimlico.cli.subcommands.PimlicoCLISubcommand

command_name = 'status'

command_help = 'Output a module execution schedule for the pipeline and execution stat
add_arguments (parser)

run_command (pipeline, opts)

module_status_color (module)

1.5. API Documentation 91

Pimlico Documentation, Release 0.8

status_colored (module, text=None)
Colour the text according to the status of the given module. If text is not given, the module’s name is returned.

module_status (module)
Detailed module status, shown when a specific module’s status is requested.

pimlico.cli.subcommands module

class PimlicoCLISubcommand
Bases: object

Base class for defining subcommands to the main command line tool.

This allows us to split up subcommands, together with all their arguments/options and their functionality, since
there are quite a lot of them.

Documentation of subcommands should be supplied in the following ways:

* Include help texts for positional args and options in the add_arguments() method. They will all be included
in the doc page for the command.

* Write a very short description of what the command is for (a few words) in command_desc. This will be
used in the summary table / TOC in the docs.

* Write a short description of what the command does in command_help. This will be available in
command-line help and used as a fallback if you don’t do the next point.

* Write a good guide to using the command (or at least say what it does) in the class’ docstring (i.e. overrid-
ing this). This will form the bulk of the command’s doc page.

command_name = None
command_help = None
command_desc = None
add_arguments (parser)

run_command (pipeline, opts)

pimlico.cli.testemail module

class EmailCmd
Bases: pimlico.cli.subcommands.PimlicoCLISubcommand

command_name = 'email'
command_help = 'Test email settings and try sending an email using them'

run_command (pipeline, opts)

pimlico.cli.util module

module_number_to_name (pipeline, name)

module_numbers_to_names (pipeline, names)
Convert module numbers to names, also handling ranges of numbers (and names) specified with “...”. Any
“...” will be filled in by the sequence of intervening modules.

92 Chapter 1. Contents

Pimlico Documentation, Release 0.8

Also, if an unexpanded module name is specified for a module that’s been expanded into multiple corresponding
to alternative parameters, all of the expanded module names are inserted in place of the unexpanded name.

format_execution_error (error)
Produce a string with lots of error output to help debug a module execution error.

Parameters error — the exception raised (ModuleExecutionError or ModuleInfoLoadError)
Returns formatted output

print_execution_error (error)

Module contents

pimlico.core package

Subpackages
pimlico.core.dependencies package
Submodules
pimlico.core.dependencies.base module

Base classes for defining software dependencies for module types and routines for fetching them.

class SoftwareDependency (name, url=None, dependencies=None)
Bases: object

Base class for all Pimlico module software dependencies.

available (local_config)
Return True if the dependency is satisfied, meaning that the software/library is installed and ready to use.

problems (local_config)
Returns a list of problems standing in the way of the dependency being available. If the list is empty, the
dependency is taken to be installed and ready to use.

Overriding methods should call super method.

installable()
Return True if it’s possible to install this library automatically. If False, the user will have to install it
themselves. Instructions for doing this may be provided by installation_instructions(), which will only
generally be called if installable() returns False.

This might be the case, for example, if the software is not available to download freely, or if it requires a
system-wide installation.

installation_instructions ()
Where a dependency can’t be installed programmatically, we typically want to be able to output instruc-
tions for the user to tell them how to go about doing it themselves. Any subclass that doesn’t provide an
automatic installation routine should override this to provide instructions.

You may also provide this even if the class does provide automatic installation. For example, you might
want to provide instructions for other ways to install the software, like a system-wide install. This instruc-
tions will be shown together with missing dependency information.

1.5. API Documentation 93

Pimlico Documentation, Release 0.8

dependencies ()
Returns a list of instances of :class:SoftwareDependency subcalsses representing this library’s own depen-
dencies. If the library is already available, these will never be consulted, but if it is to be installed, we will
check first that all of these are available (and try to install them if not).

install (local_config, trust_downloaded_archives=False)
Should be overridden by any subclasses whose library is automatically installable. Carries out the actual
installation.

You may assume that all dependencies returned by :method:dependencies have been satisfied prior to
calling this.

all_dependencies ()
Recursively fetch all dependencies of this dependency (not including itself).

get_installed_version (local_config)
If available() returns True, this method should return a SoftwareVersion object (or subclass) representing
the software’s version.

The base implementation returns an object representing an unknown version number.
If available() returns False, the behaviour is undefined and may raise an error.

class SystemCommandDependency (name, test_command, **kwargs)
Bases: pimlico.core.dependencies.base.SoftwareDependency

Dependency that tests whether a command is available on the command line. Generally requires system-wide
installation.

installable ()
Usually not automatically installable

problems (local_config)
Returns a list of problems standing in the way of the dependency being available. If the list is empty, the
dependency is taken to be installed and ready to use.

Overriding methods should call super method.

exception InstallationError
Bases: exceptions.Exception

check_and_install (deps, local_config, trust_downloaded_archives=False)
Check whether dependencies are available and try to install those that aren’t. Returns a list of dependencies that
can’t be installed.

install (dep, local_config, trust_downloaded_archives=False)

install_dependencies (pipeline, modules=None, trust_downloaded_archives=True)
Install depedencies for pipeline modules

Parameters

* pipeline -

¢ modules - list of module names, or None to install for all
Returns

recursive_deps (dep)
Collect all recursive dependencies of this dependency. Does a depth-first search so that everything comes later
in the list than things it depends on.

94 Chapter 1. Contents

Pimlico Documentation, Release 0.8

pimlico.core.dependencies.core module

Basic Pimlico core dependencies

CORE_PIMLICO_DEPENDENCIES = [PythonPackageSystemwideInstall<Pip>, PythonPackageOnPip<virtu:
Core dependencies required by the basic Pimlico installation, regardless of what pipeline is being processed.
These will be checked when Pimlico is run, using the same dependency-checking mechanism that Pimlico
modules use, and installed automatically if they’re not found.

pimlico.core.dependencies.java module

class JavaDependency (name, classes=[], jars=[], class_dirs=[], **kwargs)
Bases: pimlico.core.dependencies.base.SoftwareDependency

Base class for Java library dependencies.

In addition to the usual functionality provided by dependencies, subclasses of this provide contributions to the
Java classpath in the form of directories of jar files.

The instance has a set of representative Java classes that the checker will try to load to check whether the library
is available and functional. It will also check that all jar files exist.

Jar paths and class directory paths are assumed to be relative to the Java lib dir (lib/java), unless they are absolute
paths.

Subclasses should provide install() and override installable() if it’s possible to install them automatically.

problems (local_config)
Returns a list of problems standing in the way of the dependency being available. If the list is empty, the
dependency is taken to be installed and ready to use.

Overriding methods should call super method.

installable ()
Return True if it’s possible to install this library automatically. If False, the user will have to install it
themselves. Instructions for doing this may be provided by installation_instructions(), which will only
generally be called if installable() returns False.

This might be the case, for example, if the software is not available to download freely, or if it requires a
system-wide installation.

get_classpath_components ()

class JavaJarsDependency (name, jar_urls, **kwargs)
Bases: pimlico.core.dependencies. java.JavaDependency

Simple way to define a Java dependency where the library is packaged up in a jar, or a series of jars. The jars
should be given as a list of (name, url) pairs, where name is the filename the jar should have and url is a url from
which it can be downloaded.

URLSs may also be given in the form “url->member”, where url is a URL to a tar.gz or zip archive and member
is a member to extract from the archive. If the type of the file isn’t clear from the URL (i.e. if it doesn’t have
“.zip” or “.tar.gz” in it), specify the intended extension in the form “[ext]url->member”, where ext is “tar.gz” or

[Tl

zip”.
installable ()
Return True if it’s possible to install this library automatically. If False, the user will have to install it

themselves. Instructions for doing this may be provided by installation_instructions(), which will only
generally be called if installable() returns False.

1.5. API Documentation 95

Pimlico Documentation, Release 0.8

This might be the case, for example, if the software is not available to download freely, or if it requires a
system-wide installation.

install (local_config, trust_downloaded_archives=False)
Should be overridden by any subclasses whose library is automatically installable. Carries out the actual
installation.

You may assume that all dependencies returned by :method:dependencies have been satisfied prior to
calling this.

class PimlicodJavalibrary (name, classes=[], additional_jars=[])

Bases: pimlico.core.dependencies. java.JavaDependency

Special type of Java dependency for the Java libraries provided with Pimlico. These are packages up in jars and
stored in the build dir.

check_java_dependency (class_name, classpath=None)

Utility to check that a java class is able to be loaded.

check_java ()

Check that the JVM executable can be found. Raises a DependencyError if it can’t be found or can’t be run.

get_classpath (deps, as_list=False)

Given a list of JavaDependency subclass instances, returns all the components of the classpath that will make
sure that the dependencies are available.

[T

If as_list=True, returned as a list. Get the full classpath by “:”.join(x) on the list. If as_list=False, returns

classpath string.

get_module_classpath (module)

Builds a classpath that includes all of the classpath elements specified by Java dependencies of the given module.
These include the dependencies from get_software_dependencies() and also any dependencies of the datatype.

Used to ensure that Java modules that depend on particular jars or classes get all of those files included on their
classpath when Java is run.

class Py4JSoftwareDependency

Bases: pimlico.core.dependencies. java.JavaDependency

Java component of Py4J. Use this one as the main dependency, as it depends on the Python component and will
install that first if necessary.

dependencies ()
Returns a list of instances of :class:SoftwareDependency subcalsses representing this library’s own depen-
dencies. If the library is already available, these will never be consulted, but if it is to be installed, we will
check first that all of these are available (and try to install them if not).

jars

installable ()
Return True if it’s possible to install this library automatically. If False, the user will have to install it
themselves. Instructions for doing this may be provided by installation_instructions(), which will only
generally be called if installable() returns False.

This might be the case, for example, if the software is not available to download freely, or if it requires a
system-wide installation.

install (local_config, trust_downloaded_archives=False)
Should be overridden by any subclasses whose library is automatically installable. Carries out the actual
installation.

You may assume that all dependencies returned by :method:dependencies have been satisfied prior to
calling this.

96

Chapter 1. Contents

Pimlico Documentation, Release 0.8

pimlico.core.dependencies.python module

Tools for Python library dependencies.
Provides superclasses for Python library dependencies and a selection of commonly used dependency instances.

class PythonPackageDependency (package, name, **kwargs)

Bases: pimlico.core.dependencies.base.SoftwareDependency

Base class for Python dependencies. Provides import checks, but no installation routines. Subclasses should
either provide install() or installation_instructions().

The import checks do not (as of 0.6rc) actually import the package, as this may have side-effects that are difficult
to account for, causing odd things to happen when you check multiple times, or try to import later. Instead, it
just checks whether the package finder is about to locate the package. This doesn’t guarantee that the import
will succeed.

problems (local_config)
Returns a list of problems standing in the way of the dependency being available. If the list is empty, the
dependency is taken to be installed and ready to use.

Overriding methods should call super method.

import_package ()
Try importing package_name. By default, just uses __import__. Allows subclasses to allow for special
import behaviour.

Should raise an ImportError if import fails.

get_installed_version (local_config)
Tries to import a __version___ variable from the package, which is a standard way to define the package
version.

class PythonPackageSystemwideInstall (package_name, name, pip_package=None,

apt_package=None, yum_package=None, **kwargs)
Bases: pimlico.core.dependencies.python.PythonPackageDependency

Dependency on a Python package that needs to be installed system-wide.

installable ()
Return True if it’s possible to install this library automatically. If False, the user will have to install it
themselves. Instructions for doing this may be provided by installation_instructions(), which will only
generally be called if installable() returns False.

This might be the case, for example, if the software is not available to download freely, or if it requires a
system-wide installation.

installation_instructions()
Where a dependency can’t be installed programmatically, we typically want to be able to output instruc-
tions for the user to tell them how to go about doing it themselves. Any subclass that doesn’t provide an
automatic installation routine should override this to provide instructions.

You may also provide this even if the class does provide automatic installation. For example, you might
want to provide instructions for other ways to install the software, like a system-wide install. This instruc-
tions will be shown together with missing dependency information.

class PythonPackageOnPip (package, name=None, pip_package=None, **kwargs)

Bases: pimlico.core.dependencies.python.PythonPackageDependency
Python package that can be installed via pip. Will be installed in the virtualenv if not available.

installable()
Return True if it’s possible to install this library automatically. If False, the user will have to install it

1.5. API Documentation 97

Pimlico Documentation, Release 0.8

themselves. Instructions for doing this may be provided by installation_instructions(), which will only
generally be called if installable() returns False.

This might be the case, for example, if the software is not available to download freely, or if it requires a
system-wide installation.

install (local_config, trust_downloaded_archives=False)
Should be overridden by any subclasses whose library is automatically installable. Carries out the actual
installation.

You may assume that all dependencies returned by :method:dependencies have been satisfied prior to
calling this.

get_installed_version (local_config)
Tries to import a __version___ variable from the package, which is a standard way to define the package
version.

safe_import_bs4 ()
BS can go very slowly if it tries to use chardet to detect input encoding Remove chardet and cchardet from the
Python modules, so that import fails and it doesn’t try to use them This prevents it getting stuck on reading long
input files

class BeautifulSoupDependency
Bases: pimlico.core.dependencies.python.PythonPackageOnPip

Test import with special BS import behaviour.

import_package ()
Try importing package_name. By default, just uses __import__. Allows subclasses to allow for special
import behaviour.

Should raise an ImportError if import fails.

pimlico.core.dependencies.versions module

class SoftwareVersion (string_id)
Bases: object

Base class for representing version numbers / IDs of software. Different software may use different conventions
to represent its versions, so it may be necessary to subclass this class to provide the appropriate parsing and
comparison of versions.

compare_dotted_versions (version0, versionl)
Comparison function for reasonably standard version numbers, with subversions to any level of nesting specified
by dots.

Module contents
pimlico.core.external package
Submodules
pimlico.core.external.java module

call_java (class_name, args=[], classpath=None)

start_Jjava_process (class_name, args=[], java_args=[], wait=0.1, classpath=None)

98 Chapter 1. Contents

Pimlico Documentation, Release 0.8

class Py4JInterface (gateway_class, port=None, python_port=None, gateway_args=[],
pipeline=None, print_stdout=True, print_stderr=True, enwv={}, sys-

tem_properties={}, java_opts=[], timeout=10.0, prefix_classpath=None)
Bases: object

start (timeout=None, port_output_prefix=None)
Start a Py4J gateway server in the background on the given port, which will then be used for communicat-
ing with the Java app.

If a port has been given, it is assumed that the gateway accepts a —port option. Likewise with python_port
and a —python-port option.

If timeout is given, it overrides any timeout given in the constructor or specified in local config.
new_client ()
stop ()
clear_output_queues ()

no_retry_gateway (**kwargs)
A wrapper around the constructor of JavaGateway that produces a version of it that doesn’t retry on errors. The
default gateway keeps retying and outputting millions of errors if the server goes down, which makes responding
to interrupts horrible (as the server might die before the Python process gets the interrupt).

TODO This isn’t working: it just gets worse when I use my version!
gateway_ client_to_running server (port)

launch_gateway (gateway_class="py4j.GatewayServer’, args=[], javaopts=[], redirect_stdout=None,
redirect_stderr=None, daemonize_redirect=True, env={}, port_output_prefix=None,

startup_timeout=10.0, prefix_classpath=None)
Our own more flexble version of Py4J’s launch_gateway.

get_redirect_func (redirect)

class OutputConsumer (redirects, stream, *args, **kwargs)
Bases: threading.Thread

Thread that consumes output Modification of Py4J’s OutputConsumer to allow multiple redirects.
remove_temporary redirects ()

run ()
Method representing the thread’s activity.

You may override this method in a subclass. The standard run() method invokes the callable object passed
to the object’s constructor as the target argument, if any, with sequential and keyword arguments taken
from the args and kwargs arguments, respectively.

output_p4j_error_ info (command, returncode, stdout, stderr)

make_py4j_errors_safe (fn)
Decorator for functions/methods that call Py4J. Py4J’s exceptions include information that gets retrieved from
the Py4J server when they’re displayed. This is a problem if the server is not longer running and raises another
exception, making the whole situation very confusing.

If you wrap your function with this, Py4JJavaErrors will be replaced by our own exception type
Py4JSafeJavaError, containing some of the information about the Java exception if possible.

exception Py4JSafeJavaError (java_exception=None, str=None)
Bases: exceptions.Exception

exception DependencyCheckerError
Bases: exceptions.Exception

1.5. API Documentation 99

Pimlico Documentation, Release 0.8

exception JavaProcessError
Bases: exceptions.Exception

Module contents

Tools for calling external (non-Python) tools.

pimlico.core.modules package
Subpackages
pimlico.core.modules.map package
Submodules
pimlico.core.modules.map.filter module

class DocumentMapOutputTypeWrapper (*args, **kwargs)
Bases: object

non_filter_datatype None

wrapped_module_info None
output_name = None

archive_iter (subsample=None, start_after=None)
Provides an iterator just like TarredCorpus, but instead of iterating over data read from disk, gets it on the
fly from the input datatype.

data_ready ()
Ready to supply this data as soon as all the wrapper module’s inputs are ready to produce their data.

wrap_module_info_as_filter (module_info_instance)
Create a filter module from a document map module so that it gets executed on the fly to provide its outputs as
input to later modules. Can be applied to any document map module simply by adding filter=T to its config.

This function is called when filter=T is given.
Parameters module_info_instance - basic module info to wrap the outputs of

Returns a new non-executable Modulelnfo whose outputs are produced on the fly and will be iden-
tical to the outputs of the wrapper module.

pimlico.core.modules.map.multiproc module

Document map modules can in general be easily parallelized using multiprocessing. This module provides implemen-
tations of a pool and base worker processes that use multiprocessing, making it dead easy to implement a parallelized
module, simply by defining what should be done on each document.

In particular, use :fun:.multiprocessing_executor_factory wherever possible.

100 Chapter 1. Contents

Pimlico Documentation, Release 0.8

class MultiprocessingMapProcess (input_queue, output_queue, exception_queue, executor,

docs_per_batch=1)
Bases: multiprocessing.process.Process, pimlico.core.modules.map.
DocumentMapProcessMixin

A base implementation of document map parallelization using multiprocessing. Note that not all document map
modules will want to use this: e.g. if you call a background service that provides parallelization itself (like the
CoreNLP module) there’s no need for multiprocessing in the Python code.

notify no_more_inputs ()
Called when there aren’t any more inputs to come.

run ()
Method to be run in sub-process; can be overridden in sub-class

class MultiprocessingMapPool (executor, processes)
Bases: pimlico.core.modules.map.DocumentProcessorPool

A base implementation of document map parallelization using multiprocessing.
PROCESS_TYPE = None

SINGLE_PROCESS_TYPE = None

start_worker ()

static create_queue (maxsize=None)

shutdown ()

notify no_more_inputs ()

empty_all_queues ()

class MultiprocessingMapModuleExecutor (module_instance_info, **kwargs)
Bases: pimlico.core.modules.map.DocumentMapModuleExecutor

POOL_TYPE = None

create_pool (processes)
Should return an instance of the pool to be used for document processing. Should generally be a subclass
of DocumentProcessorPool.

Always called after preprocess().

postprocess (error=False)
Allows subclasses to define a finishing procedure to be called after corpus processing if finished.

multiprocessing_executor_factory (process_document fn, preprocess_fn=None, post-
process_fn=None, worker_set_up_fn=None,
worker_tear_down_fn=None, batch_docs=None, multi-

processing_single_process=False)
Factory function for creating an executor that uses the multiprocessing-based implementations of document-

map pools and worker processes. This is an easy way to implement a parallelizable executor, which is suitable
for a large number of module types.

process_document_fn should be a function that takes the following arguments (unless batch_docs is given):
« the worker process instance (allowing access to things set during setup)
e archive name
* document name

* the rest of the args are the document itself, from each of the input corpora

1.5. API Documentation 101

Pimlico Documentation, Release 0.8

If proprocess_fn is given, it is called from the main process once before execution begins, with the executor as
an argument.

If postprocess_fn is given, it is called from the main process at the end of execution, including on the way out
after an error, with the executor as an argument and a kwarg error which is True if execution failed.

If worker_set_up_fn is given, it is called within each worker before execution begins, with the worker process
instance as an argument. Likewise, worker_tear_down_fn is called from within the worker process before it
exits.

Alternatively, you can supply a worker type, a subclass of :class:.MultiprocessingMapProcess, as the first argu-
ment. If you do this, worker_set_up_fn and worker_tear_down_fn will be ignored.

If batch_docs is not None, process_document_fn is treated differently. Instead of supplying the pro-
cess_document() of the worker, it supplies a process_documents(). The second argument is a list of tuples, each
of which is assumed to be the args to process_document() for a single document. In this case, docs_per_batch
is set on the worker processes, so that the given number of docs are collected from the input and passed into
process_documents() at once.

By default, if only a single process is needed, we use the threaded implementation of a map process in-
stead of multiprocessing. If this doesn’t work out in your case, for some reason, specify multiprocess-
ing_single_process=True and a mutiprocessing process will be used even when only creating one.

pimlico.core.modules.map.singleproc module

Sometimes the simple multiprocessing-based approach to map module parallelization just isn’t suitable. This module
provides an equivalent set of implementations and convenience functions that don’t use multiprocessing, but conform
to the pool-based execution pattern by creating a single-thread pool.

class SingleThreadMapModuleExecutor (module_instance_info, **kwargs)

Bases: pimlico.core.modules.map.threaded. ThreadingMapModuleExecutor

create_pool (processes)
Should return an instance of the pool to be used for document processing. Should generally be a subclass
of DocumentProcessorPool.

Always called after preprocess().

single_process_executor_factory (process_document_fn, preprocess_fn=None, post-

process_fn=None, worker_set_up_fn=None,

worker_tear_down_fn=None, batch_docs=None)
Factory function for creating an executor that uses the single-process implementations of document-map pools

and workers. This is an easy way to implement a non-parallelized executor
process_document_fn should be a function that takes the following arguments:
* the executor instance (allowing access to things set during setup)
e archive name
* document name
* the rest of the args are the document itself, from each of the input corpora
If proprocess_fn is given, it is called once before execution begins, with the executor as an argument.

If postprocess_fn is given, it is called at the end of execution, including on the way out after an error, with the
executor as an argument and a kwarg error which is True if execution failed.

102

Chapter 1. Contents

Pimlico Documentation, Release 0.8

pimlico.core.modules.map.threaded module

Just like multiprocessing, but using threading instead. If you’re not sure which you should use, it’s probably multipro-
cessing.

class ThreadingMapThread (input_queue, output_queue, exception_gqueue, executor)
Bases: threading.Thread, pimlico.core.modules.map.DocumentMapProcessMixin

notify no_more_inputs ()
Called when there aren’t any more inputs to come.

run ()
Method representing the thread’s activity.

You may override this method in a subclass. The standard run() method invokes the callable object passed
to the object’s constructor as the target argument, if any, with sequential and keyword arguments taken
from the args and kwargs arguments, respectively.

shutdown (timeout=3.0)

class ThreadingMapPool (execufor, processes)
Bases: pimlico.core.modules.map.DocumentProcessorPool

THREAD_ TYPE = None
start_worker ()

static create_queue (maxsize=None)
shutdown ()

class ThreadingMapModuleExecutor (module_instance_info, **kwargs)
Bases: pimlico.core.modules.map.DocumentMapModuleExecutor

POOL_TYPE = None

create_pool (processes)
Should return an instance of the pool to be used for document processing. Should generally be a subclass
of DocumentProcessorPool.

Always called after preprocess().

postprocess (error=False)
Allows subclasses to define a finishing procedure to be called after corpus processing if finished.

threading executor_factory (process_document_fn, preprocess_fn=None, postprocess_fn=None,

worker_set_up_fn=None, worker_tear_down_fn=None)
Factory function for creating an executor that uses the threading-based implementations of document-map pools

and worker processes.
process_document_fn should be a function that takes the following arguments:
* the worker process instance (allowing access to things set during setup)
e archive name
e document name
* the rest of the args are the document itself, from each of the input corpora

If proprocess_fn is given, it is called from the main thread once before execution begins, with the executor as an
argument.

If postprocess_fn is given, it is called from the main thread at the end of execution, including on the way out
after an error, with the executor as an argument and a kwarg error which is True if execution failed.

1.5. API Documentation 103

Pimlico Documentation, Release 0.8

If worker_set_up_fn is given, it is called within each worker before execution begins, with the worker thread
instance as an argument. Likewise, worker_tear_down_fn is called from within the worker thread before it exits.

Alternatively, you can supply a worker type, a subclass of :class:. ThreadingMapThread, as the first argument. If
you do this, worker_set_up_fn and worker_tear_down_fn will be ignored.

Module contents

class DocumentMapModulelInfo (module_name, pipeline, **kwargs)
Bases: pimlico.core.modules.base.BaseModuleInfo

Abstract module type that maps each document in turn in a corpus. It produces a single output document for
every input.

Subclasses should specify the input types, which should all be subclasses of TarredCorpus, and output types, the
first of which (i.e. default) should also be a subclass of TarredCorpus. The base class deals with iterating over
the input(s) and writing the outputs to a new TarredCorpus. The subclass only needs to implement the mapping
function applied to each document (in its executor).

module_outputs = [('documents', <class 'pimlico.datatypes.tar.TarredCorpus'>)]
input_corpora

get_writer (output_name, output_dir, append=False)
Get the writer instance that will be given processed documents to write. Should return a subclass of
TarredCorpusWriter. The default implementation instantiates a plain TarredCorpusWriter.

get_writers (append=False)

get_detailed_status ()
Returns a list of strings, containing detailed information about the module’s status that is specific to the
module type. This may include module-specific information about execution status, for example.

Subclasses may override this to supply useful (human-readable) information specific to the module type.
They should called the super method.

class DocumentMapModuleExecutor (module_instance_info, **kwargs)
Bases: pimlico.core.modules.base.BaseModuleExecutor

Base class for executors for document map modules. Subclasses should provide the behaviour for each individ-
ual document by defining a pool (and worker processes) to handle the documents as they’re fed into it.

Note that in most cases it won’t be necessary to override the pool and worker base classes yourself. Unless you
need special behaviour, use the standard implementations and factory functions.

Although the pattern of execution for all document map modules is based on parallel processing (creating a
pool, spawning worker processes, etc), this doesn’t mean that all such modules have to be parallelizable. If you
have no reason not to parallelize, it’s recommended that you do (with single-process execution as a special case).
However, sometimes parallelizing isn’t so simple: in these cases, consider using the tools in :mod:.singleproc.

preprocess ()
Allows subclasses to define a set-up procedure to be called before corpus processing begins.

postprocess (error=False)
Allows subclasses to define a finishing procedure to be called after corpus processing if finished.

create_pool (processes)
Should return an instance of the pool to be used for document processing. Should generally be a subclass
of DocumentProcessorPool.

Always called after preprocess().

104 Chapter 1. Contents

Pimlico Documentation, Release 0.8

retrieve_processing_ status ()
update_processing_status (docs_completed, archive_name, filename)

execute ()
Run the actual module execution.

May return None, in which case it’s assumed to have fully completed. If a string is returned, it’s used as an
alternative module execution status. Used, e.g., by multi-stage modules that need to be run multiple times.

skip_invalid (fn)
Decorator to apply to document map executor process_document() methods where you want to skip doing any
processing if any of the input documents are invalid and just pass through the error information.

Be careful not to confuse this with the process_document() methods on datatypes. You don’t need a decorator
on them to skip invalid documents, as it’s not called on them anyway.

skip_invalids (fin)
Decorator to apply to document map executor process_documents() methods where you want to skip doing any
processing if any of the input documents are invalid and just pass through the error information.

invalid_doc_on_error (fi)
Decorator to apply to process_document() methods that causes all exceptions to be caught and an InvalidDoc-
ument to be returned as the result, instead of letting the error propagate up and call a halt to the whole corpus
processing.

invalid_docs_on_error (fn)
Decorator to apply to process_documents() methods that causes all exceptions to be caught and an InvalidDoc-
ument to be returned as the result for every input document.

class ProcessOutput (archive, filename, data)
Bases: object

Wrapper for all result data coming out from a worker.

class InputQueueFeeder (input_queue, iterator, complete_callback=None)
Bases: threading.Thread

Background thread to read input documents from an iterator and feed them onto an input queue for worker
processes/threads.

get_next_output_document ()

check_invalid (archive, filename)
Checks whether a given document was invalid in the input. Once the check has been performed, the item
is removed from the list, for efficiency, so this should only be called once per document.

run ()
Method representing the thread’s activity.

You may override this method in a subclass. The standard run() method invokes the callable object passed
to the object’s constructor as the target argument, if any, with sequential and keyword arguments taken
from the args and kwargs arguments, respectively.

check_for_error ()
Can be called from the main thread to check whether an error has occurred in this thread and raise a suitable
exception if so

shutdown (timeout=3.0)
Cancel the feeder, if it’s still feeding and stop the thread. Call only after you’re sure you no longer need
anything from any of the queues. Waits for the thread to end.

Call from the main thread (that created the feeder) only.

1.5. API Documentation 105

Pimlico Documentation, Release 0.8

class DocumentProcessorPool (processes)
Bases: object

Base class for pools that provide an easy implementation of parallelization for document map modules. Defines
the core interface for pools.

If you’re using multiprocessing, you’ll want to use the multiprocessing-specific subclass.
notify no_more_inputs ()

static create_queue (maxsize=None)
May be overridden by subclasses to provide different implementations of a Queue. By default, uses the
multiprocessing queue type. Whatever is returned, it should implement the interface of Queue.Queue.

shutdown ()
empty_all_queues ()

class DocumentMapProcessMixin (input_gueue, output_queue, exception_queue,

docs_per_batch=1)
Bases: object

Mixin/base class that should be implemented by all worker processes for document map pools.

set_up ()
Called when the process starts, before it starts accepting documents.

process_document (archive, filename, *docs)

process_documents (doc_tuples)
Batched version of process_document(). Default implementation just calls process_document() on each
document, but if you want to group documents together and process multiple at once, you can override this
method and make sure the docs_per_batch is set > 1.

Each item in the list of doc tuples should be a tuple of the positional args to process_document() — i.e.
archive_name, filename, doc_from_corpusl, [doc_from corpus2, ...]

tear_down ()
Called from within the process after processing is complete, before exiting.

notify no_more_inputs ()
Called when there aren’t any more inputs to come.

exception WorkerStartupError (*args, **kwargs)
Bases: exceptions.Exception

exception WorkerShutdownError (*args, **kwargs)
Bases: exceptions.Exception

Submodules
pimlico.core.modules.base module

This module provides base classes for Pimlico modules.

The procedure for creating a new module is the same whether you’re contributing a module to the core set in the
Pimlico codebase or a standalone module in your own codebase, or for a specific pipeline.

A Pimlico module is identified by the full Python-path to the Python package that contains it. This package should be
laid out as follows:

106 Chapter 1. Contents

Pimlico Documentation, Release 0.8

* The module’s metadata is defined by a class in info.py called ModuleInfo, which should inherit from BaseMod-
uleInfo or one of its subclasses.

* The module’s functionality is provided by a class in execute.py called ModuleExecutor, which should inherit
from BaseModuleExecutor.

The exec Python module will not be imported until an instance of the module is to be run. This means that you
can import dependencies and do any necessary initialization at the point where it’s executed, without worrying about
incurring the associated costs (and dependencies) every time a pipeline using the module is loaded.

class BaseModuleInfo (module_name, pipeline, inputs={}, options={}, optional_outputs=[],
docstring=", include_outputs=[], alt_expanded_from=None,

alt_param_settings=[], module_variables={})
Bases: object

Abstract base class for all pipeline modules’ metadata.
module_type name = None
module_readable_name = None

module_options = {}
Specifies a list of (name, datatype class) pairs for inputs that are always required

module_inputs = []
Specifies a list of (name, datatype class) pairs for optional inputs. The module’s execution may vary
depending on what is provided. If these are not given, None is returned from get_input()

module_optional_inputs = []
Specifies a list of (name, datatype class) pairs for outputs that are always written

module_optional_outputs = []
Whether the module should be executed Typically True for almost all modules, except input modules
(though some of them may also require execution) and filters

module_executable = True
If specified, this ModuleExecutor class will be used instead of looking one up in the exec Python module

module_executor override = None
Usually None. In the case of stages of a multi-stage module, stores a pointer to the main module.

main_module = None

module_outputs = []
Specifies a list of (name, datatype class) pairs for outputs that are written only if they’re specified in the
“output” option or used by another module

load_executor ()
Loads a ModuleExecutor for this Pimlico module. Usually, this just involves calling
load _module_executor (), but the default executor loading may be overridden for a particu-
lar module type by overriding this function. It should always return a subclass of ModuleExecutor, unless
there’s an error.

classmethod get_key info_table()
When generating module docs, the table at the top of the page is produced by calling this method. It should
return a list of two-item lists (title + value). Make sure to include the super-class call if you override this
to add in extra module-specific info.

metadata_ filename
get_metadata ()

set_metadata_vwvalue (attr, val)

1.5. API Documentation 107

Pimlico Documentation, Release 0.8

set_metadata_values (val_dict)
status
execution_history_path

add_execution_history record (line)
Output a single line to the file that stores the history of module execution, so we can trace what we’ve
done.

execution_history
Get the entire recorded execution history for this module. Returns an empty string if no history has been
recorded.

input_names
All required inputs, first, then all supplied optional inputs

output_names

classmethod process_module_options (opt_dict)
Parse the options in a dictionary (probably from a config file), checking that they’re valid for this model

type.
Parameters opt_dict — dict of options, keyed by option name
Returns dict of options

classmethod extract_input_options (opt_dict, module_name=None, previ-

ous_module_name=None, module_expansions={})
Given the config options for a module instance, pull out the ones that specify where the inputs come from

and match them up with the appropriate input names.

The inputs returned are just names as they come from the config file. They are split into module name and
output name, but they are not in any way matched up with the modules they connect to or type checked.

Parameters

* module_name — name of the module being processed, for error output. If not given, the
name isn’t included in the error.

* previous_module_name — name of the previous module in the order given in the
config file, allowing a single-input module to default to connecting to this if the input
connection wasn’t given

* module_expansions — dictionary mapping module names to a list of expanded mod-
ule names, where expansion has been performed as a result of alternatives in the parame-
ters. Provided here so that the unexpanded names may be used to refer to the whole list of
module names, where a module takes multiple inputs on one input parameter

Returns dictionary of inputs

static get_extra_outputs_from_options (options)
Normally, which optional outputs get produced by a module depend on the ‘output’ option given in the
config file, plus any outputs that get used by subsequent modules. By overriding this method, module types
can add extra outputs into the list of those to be included, conditional on other options.

It also receives the processed dictionary of inputs, so that the additional outputs can depend on what is fed
into the input.

E.g. the corenlp module include the ‘annotations’ output if annotators are specified, so that the user doesn’t
need to give both options.

108

Chapter 1. Contents

Pimlico Documentation, Release 0.8

provide_further_outputs ()

Called during instantiation, once inputs and options are available, to add a further list of module outputs
that are dependent on inputs or options.

get_module_output_dir (short_term_store=False)

Gets the path to the base output dir to be used by this module, relative to the storage base dir. When
outputting data, the storage base dir will always be the short term store path, but when looking for the
output data other base paths might be explored, including the long term store.

Parameters short_term store - if True, return absolute path to output dir in short-term
store (used for output)

Returns path, relative to store base path, or if short_term_store=True absolute path to output dir

get_absolute_output_dir (output_name)

The simplest way to get hold of the directory to use to output data to for a given output. This is the usual
way to get an output directory for an output writer.

The directory is an absolute path to a location in the Pimlico short-term store.
Parameters output_name — the name of an output

Returns the absolute path to the output directory to use for the named output

get_output_dir (output_name, short_term_store=False)

Parameters

* short_term_store —return an absolute path in the short-term store. If False (default),
return a relative path, specified relative to the root of the Pimlico store used. This allows
multiple stores to be searched for output

* output_name — the name of an output

Returns the path to the output directory to use for the named output, which may be relative
to the root of the Pimlico store in use (default) or an absolute path in the short-term store,
depending on short_term_store

get_output_datatype (output_name=None, additional_names=[])

instantiate_output_datatype (output_name, output_datatype, **kwargs)

Subclasses may want to override this to provide special behaviour for instantiating particular outputs’
datatypes.

Additional kwargs will be pass through to the datatype’s init.

get_output (output_name=None, additional_names=None, **kwargs)

Get a datatype instance corresponding to one of the outputs of the module.

Additional kwargs will be pass through to the datatype’s init.

is_multiple_input (input_name=None)

Returns True if the named input (or default input if no name is given) is a MultipleInputs input, False
otherwise. If it is, get_input() will return a list, otherwise it will return a single datatype.

get_input_module_connection (input_name=None, always_list=False)

Get the Modulelnfo instance and output name for the output that connects up with a named input (or the
first input) on this module instance. Used by get_input() — most of the time you probably want to use that
to get the instantiated datatype for an input.

If the input type was specified with MultipleInputs, meaning that we’re expecting an unbounded number
of inputs, this is a list. Otherwise, it’s a single (module, output_name) pair. If always_list=True, in this
latter case we return a single-item list.

1.5.

API Documentation 109

Pimlico Documentation, Release 0.8

get_input_datatype (input_name=None, always_list=False)

Get a list of datatype classes corresponding to one of the inputs to the module. If an input name is not
given, the first input is returned.

If the input type was specified with MultipleInputs, meaning that we’re expecting an unbounded number
of inputs, this is a list. Otherwise, it’s a single datatype.

get_input (input_name=None, always_list=False, **kwargs)

Get a datatype instances corresponding to one of the inputs to the module. Looks up the corresponding
output from another module and uses that module’s metadata to get that output’s instance. If an input name
is not given, the first input is returned.

If the input type was specified with MultipleInputs, meaning that we’re expecting an unbounded number
of inputs, this is a list. Otherwise, it’s a single datatype instance. If always_list=True, in this latter case we
return a single-item list.

If the requested input name is an optional input and it has not been supplied, returns None.

Additional kwargs will be passed through to the datatype’s init call.

input_ready (input_name=None)

Check whether the datatype is (or datatypes are) ready to go, corresponding to the named input.
Parameters input_name - input to check

Returns True if input is ready

all_inputs_ready ()

Check input_ready() on all inputs.

Returns True if all input datatypes are ready to be used

classmethod is_filter ()

missing_module_data()

Reports missing data not associated with an input dataset.

Calling missing_data() reports any problems with input data associated with a particular input to this
module. However, modules may also rely on data that does not come from one of their inputs. This
happens primarily (perhaps solely) when a module option points to a data source. This might be the case
with any module, but is particularly common among input reader modules, which have no inputs, but read
data according to their options.

Returns list of problems

missing_data (input_names=None, assume_executed=[], assume_failed=[], al-

low_preliminary=False)
Check whether all the input data for this module is available. If not, return a list strings indicating which

outputs of which modules are not available. If it’s all ready, returns an empty list.

To check specific inputs, give a list of input names. To check all inputs, don’t specify input_names. To
check the default input, give input_names=[None]. If not checking a specific input, also checks non-input
data (see missing_module_data()).

If assume_executed is given, it should be a list of module names which may be assumed to have been
executed at the point when this module is executed. Any outputs from those modules will be excluded
from the input checks for this module, on the assumption that they will have become available, even if
they’re not currently available, by the time they’re needed.

If assume_executed is given, it should be a list of module names which should be assumed to have failed.
If we rely on data from the output of one of them, instead of checking whether it’s available we simply
assume it’s not.

110

Chapter 1. Contents

Pimlico Documentation, Release 0.8

Why do this? When running multiple modules in sequence, if one fails it is possible that its output datasets
look like complete datasets. For example, a partially written iterable corpus may look like a perfectly valid
corpus, which happens to be smaller than it should be. After the execution failure, we may check other
modules to see whether it’s possible to run them. Then we need to know not to trust the output data from
the failed module, even if it looks valid.

If allow_preliminary=True, for any inputs that are multiple inputs and have multiple connections to previ-
ous modules, consider them to be satisfied if at least one of their inputs is ready. The normal behaviour is
to require all of them to be ready, but in a preliminary run this requirement is relaxed.

classmethod is_input ()
dependencies
Returns list of names of modules that this one depends on for its inputs.

get_transitive_dependencies ()
Transitive closure of dependencies.

Returns list of names of modules that this one recursively (transitively) depends on for its inputs.
get_input_type_ requirements (input_name=None)
typecheck_inputs ()

typecheck_input (input_name)
Typecheck a single input. typecheck_inputs () calls this and is used for typechecking of a pipeline.
This method returns the (or the first) satisfied input requirement, or raises an exception if typechecking
failed, so can be handy separately to establish which requirement was met.

The result is always a list, but will contain only one item unless the input is a multiple input.

get_software_dependencies ()
Check that all software required to execute this module is installed and locatable. This is separate to
metadata config checks, so that you don’t need to satisfy the dependencies for all modules in order to be
able to run one of them. You might, for example, want to run different modules on different machines.
This is called when a module is about to be executed and each of the dependencies is checked.

Returns a list of instances of subclasses of :class:~pimlico.core.dependencies.base.SoftwareDependency,
representing the libraries that this module depends on.

Take care when providing dependency classes that you don’t put any import statements at the top of the
Python module that will make loading the dependency type itself dependent on runtime dependencies.
You’ll want to run import checks by putting import statements within this method.

You should call the super method for checking superclass dependencies.

get_input_software_dependencies ()
Collects library dependencies from the input datatypes to this module, which will need to be satisfied for
the module to be run.

Unlike get_software dependencies (), it shouldn’t need to be overridden by subclasses, since it
just collects the results of getting dependencies from the datatypes.

get_output_software_ dependencies ()
Collects library dependencies from the output datatypes to this module, which will need to be satisfied for
the module to be run.

Unlike get_input_software_dependencies (), it may not be the case that all of these depen-
dencies strictly need to be satisfied before the module can be run. It could be that a datatype can be written
without satisfying all the dependencies needed to read it. However, we assume that dependencies of all
output datatypes must be satisfied in order to run the module that writes them, since this is usually the case,
and these are checked before running the module.

1.5. API Documentation 111

Pimlico Documentation, Release 0.8

Unlike get_software_dependencies (), it shouldn’t need to be overridden by subclasses, since it
just collects the results of getting dependencies from the datatypes.

check_ready_ to_run|()
Called before a module is run, or if the ‘check’ command is called. This will only be called after all library
dependencies have been confirmed ready (see :method:get_software_dependencies).

Essentially, this covers any module-specific checks that used to be in check_runtime_dependencies() other
than library installation (e.g. checking models exist).

Always call the super class’ method if you override.

Returns a list of (name, description) pairs, where the name identifies the problem briefly and the description
explains what’s missing and (ideally) how to fix it.

reset_execution ()
Remove all output data and metadata from this module to make a fresh start, as if it’s never been executed.

May be overridden if a module has some side effect other than creating/modifying things in its output di-
rectory(/ies), but overridden methods should always call the super method. Occasionally this is necessary,
but most of the time the base implementation is enough.

get_detailed_status()
Returns a list of strings, containing detailed information about the module’s status that is specific to the
module type. This may include module-specific information about execution status, for example.

Subclasses may override this to supply useful (human-readable) information specific to the module type.
They should called the super method.

classmethod module_package_name ()
The package name for the module, which is used to identify it in config files. This is the package containing
the info.py in which the Modulelnfo is defined.

get_execution_dependency tree ()
Tree of modules that will be executed when this one is executed. Where this module depends on filters,
the tree goes back through them to find what they depend on (since they will be executed simultaneously)

get_all_executed modules ()
Returns a list of all the modules that will be executed when this one is (including itself). This is the current
module (if executable), plus any filters used to produce its inputs.

lock_path

lock ()
Mark the module as locked, so that it cannot be executed. Called when execution begins, to ensure that
you don’t end up executing the same module twice simultaneously.

unlock ()
Remove the execution lock on this module.

is locked ()
Returns True is the module is currently locked from execution

get_new_log_filename (name=’error’)
Returns an absolute path that can be used to output a log file for this module. This is used for outputting
error logs. It will always return a filename that doesn’t currently exist, so can be used multiple times to
output multiple logs.

collect_unexecuted_dependencies (modules)
Given a list of modules, checks through all the modules that they depend on to put together a list of modules
that need to be executed so that the given list will be left in an executed state. The list includes the modules
themselves, if they’re not fully executed, and unexecuted dependencies of any unexecuted modules (recursively).

112 Chapter 1. Contents

Pimlico Documentation, Release 0.8

Parameters modules — list of Modulelnfo instances
Returns list of Modulelnfo instances that need to be executed

collect_runnable_modules (pipeline, preliminary=False)
Look for all unexecuted modules in the pipeline to find any that are ready to be executed. Keep collecting
runnable modules, including those that will become runnable once we’ve run earlier ones in the list, to produce
a list of a sequence of modules that could be set running now.

Parameters pipeline - pipeline config

Returns ordered list of runable modules. Note that it must be run in this order, as some might
depend on earlier ones in the list

satisfies_typecheck (provided_type, type_requirements)
Interface to Pimlico’s standard type checking (see check_type) that returns a boolean to say whether type check-
ing succeeded or not.

check_type (provided_type, type_requirements)
Type-checking algorithm for making sure outputs from modules connect up with inputs that they satisfy the
requirements for.

class BaseModuleExecutor (module_instance_info, stage=None, debug=False, force_rerun=False)
Bases: object

Abstract base class for executors for Pimlico modules. These are classes that actually do the work of executing
the module on given inputs, writing to given output locations.

execute ()
Run the actual module execution.

May return None, in which case it’s assumed to have fully completed. If a string is returned, it’s used as an
alternative module execution status. Used, e.g., by multi-stage modules that need to be run multiple times.

exception ModuleInfoloadError (*args, **kwargs)
Bases: exceptions.Exception

exception ModuleExecutorLoadError
Bases: exceptions.Exception

exception ModuleTypeError
Bases: exceptions.Exception

exception TypeCheckError
Bases: exceptions.Exception

exception DependencyError (message, stderr=None, stdout=None)
Bases: exceptions.Exception

Raised when a module’s dependencies are not satisfied. Generally, this means a dependency library needs to be
installed, either on the local system or (more often) by calling the appropriate make target in the 1ib directory.

load_module_executor (path_or_info)
Utility for loading the executor class for a module from its full path. More or less just a wrapper around an
import, with some error checking. Locates the executor by a standard procedure that involves checking for an
“execute” python module alongside the info’s module.

Note that you shouldn’t generally use this directly, but instead call the load_executor() method on a module info
(which will call this, unless special behaviour has been defined).

Parameters path — path to Python package containing the module

Returns class

1.5. API Documentation 113

Pimlico Documentation, Release 0.8

load_module_info (path)
Utility to load the metadata for a Pimlico pipeline module from its package Python path.

Parameters path -

Returns

pimlico.core.modules.execute module

Runtime execution of modules

This module provides the functionality to check that Pimlico modules are ready to execute and execute them. It is used
by the run command.

check_and_execute_modules (pipeline, module_names, force_rerun=False, debug=False, log=None,
all_deps=False, check_only=False, exit_on_error=False, prelimi-
nary=False, email=None)
Main method called by the run command that first checks a pipeline, checks all pre-execution requirements
of the modules to be executed and then executes each of them. The most common case is to execute just one
module, but a sequence may be given.

Parameters

* exit_on_error —drop out if a ModuleExecutionError occurs in any individual module,
instead of continuing to the next module that can be run

* pipeline - loaded PipelineConfig

* module_names - list of names of modules to execute in the order they should be run

* force_rerun — execute modules, even if they’re already marked as complete

* debug - output debugging info

* log - logger, if you have one you want to reuse

* all_deps - also include unexecuted dependencies of the given modules

* check_only — run all checks, but stop before executing. Used for check command
Returns

check_modules_ready (pipeline, modules, log, preliminary=False)
Check that a module is ready to be executed. Always called before execution begins.

Parameters
* pipeline - loaded PipelineConfig

* modules - loaded Modulelnfo instances, given in the order they’re going to be executed.
For each module, it’s assumed that those before it in the list have already been run when it
is run.

* log - logger to output to

Returns If preliminary=True, list of problems that were ignored by allowing preliminary run. Oth-
erwise, None — we raise an exception when we first encounter a problem

execute_modules (pipeline, modules, log, force_rerun=False, debug="False, exit_on_error=False, prelim-
inary=False, email=None)

format_execution_dependency_tree (free)

send_final_report_email (pipeline, error_modules, success_modules, skipped_modules,
all_modules)

114 Chapter 1. Contents

Pimlico Documentation, Release 0.8

send_module_report_email (pipeline, module, short_error, long_error)

exception ModuleExecutionError (*args, **kwargs)
Bases: exceptions.Exception

exception ModuleNotReadyError (*args, **kwargs)
Bases: pimlico.core.modules.execute.ModuleExecutionError

exception ModuleAlreadyCompletedError (*args, **kwargs)
Bases: pimlico.core.modules.execute.ModuleExecutionError

exception StopProcessing
Bases: exceptions.Exception

pimlico.core.modules.inputs module

Base classes and utilities for input modules in a pipeline.

class InputModuleInfo (module_name, pipeline, inputs={}, options={}, optional_outputs=[],
docstring=", include_outputs=[], alt_expanded_from=None,

alt_param_settings=[|, module_variables={})
Bases: pimlico.core.modules.base.BaseModuleInfo

Base class for input modules. These don’t get executed in general, they just provide a way to iterate over input
data.

You probably don’t want to subclass this. It’s usually simplest to define a datatype for reading the input data
and then just specify its class as the module’s type. This results in a subclass of this module info being created
dynamically to read that data.

Note that module_executable is typically set to False and the base class does this. However, some input modules
need to be executed before the input is usable, for example to collect stats about the input data.

module_type name = 'input'
module_executable = False

instantiate_output_datatype (output_name, output_datatype, **kwargs)
Subclasses may want to override this to provide special behaviour for instantiating particular outputs’
datatypes.

Additional kwargs will be pass through to the datatype’s init.

input_module_factory (datatype)
Create an input module class to load a given datatype.

class ReaderOutputType (reader_options, base_dir, pipeline, **kwargs)
Bases: pimlico.datatypes.base.IterableCorpus

A datatype for reading in input according to input module options and allowing it to be iterated over by other
modules.

Typically used together with iterable_input_reader_factory() as the output datatype.

__len__ should be overridden to take the processed input module options and return the length of the corpus
(number of documents).

__iter__ should use the processed input module options and return an iterator over the corpus’ documents
(e.g. a generator function). Each item yielded should be a pair (doc_name, data) and data should be in
the appropriate internal format associated with the document type.

data_ready should be overridden to use the processed input module options and return True if the data is
ready to be read in.

1.5. API Documentation 115

Pimlico Documentation, Release 0.8

In all cases, the input options are available as self.reader_options.
datatype name = 'reader_ iterator’

data point_type = None
Must be overridden by subclasses

emulated _datatype
aliasof pimlico.datatypes.base.IterableCorpus

data_ready ()
Check whether the data corresponding to this datatype instance exists and is ready to be read.

Default implementation just checks whether the data dir exists. Subclasses might want to add their own
checks, or even override this, if the data dir isn’t needed.

class DocumentCounterModuleExecutor (module_instance_info, stage=None, debug=False,

force_rerun=False)
Bases: pimlico.core.modules.base.BaseModuleExecutor

An executor that just calls the __len__ method to count documents and stores the result

execute ()
Run the actual module execution.

May return None, in which case it’s assumed to have fully completed. If a string is returned, it’s used as an
alternative module execution status. Used, e.g., by multi-stage modules that need to be run multiple times.

decorate_require_stored_len (0bj)

Decorator for a data_ready() function that requires the data’s length to have been computed. Used when exe-
cute_count==True.

iterable_input_reader_ factory (input_module_options, output_type, module_type_name=None,

module_readable_name=None, software_dependencies=None,

)) execute_count=False))
Factory for creating an input reader module type. This is a non-executable module that has no inputs. It reads

its data from some external location, using the given module options. The resulting dataset is an IterableCorpus
subtype, with the given document type.

output_type is a datatype that performs the actual iteration over the data and is instantiated with the pro-
cessed options as its first argument. This is typically created by subclassing ReaderOutputType and providing
len, iter and data_ready methods.

software_dependencies may be a list of software dependencies that the module-info will return when
get_software_dependencies () is called, or a function that takes the module-info instance and returns
such a list. If left blank, no dependencies are returned.

If execute_count==True, the module will be an executable module and the execution will simply count
the number of documents in the corpus and store the count. This should be used if counting the documents
in the dataset is not completely trivial and quick (e.g. if you need to read through the data itself, rather than
something like counting files in a directory or checking metedata). It is common for this to be the only pro-
cessing that needs to be done on the dataset before using it. The output_type should then implement a
count_documents () method. The __len__ method then simply use the computed and stored value.
There is no need to override it.

If the count_documents () method returns a pair of integers, instead of just a single integer, they are taken
to be the total number of documents in the corpus and the number of valid documents (i.e. the number that
will be produce an InvalidDocument). In this case, the valid documents count is also stored in the metadata, as
valid_documents.

How is this different from ‘‘input_module_factory*‘? This method is used in your module code to prepare a
Modulelnfo class for reading a particular type of input data and presenting it as a Pimlico dataset of the given

116

Chapter 1. Contents

Pimlico Documentation, Release 0.8

type. input_module_factory, on the other hand, is used by Pimlico when you specify a datatype as a
module type in a config file.

Note that, in future versions, reading datasets output by another Pimlico pipeline will be the only purpose for
that special notation. The possibility of specifying input_module_options to create an input reader will
disappear, so the use of input_module_options should be phased out and replaced with input reader
modules, such as those created by this factory.

pimlico.core.modules.multistage module

class MultistageModuleInfo (module_name, pipeline, **kwargs)
Bases: pimlico.core.modules.base.BaseModuleInfo

Base class for multi-stage modules. You almost certainly don’t want to override this yourself, but use the factory
method instead. It exists mainly for providing a way of identifying multi-stage modules.

module_executable = True
stages = None

typecheck_inputs ()
Overridden to check internal output-input connections as well as the main module’s inputs.

get_software_dependencies ()
Check that all software required to execute this module is installed and locatable. This is separate to
metadata config checks, so that you don’t need to satisfy the dependencies for all modules in order to be
able to run one of them. You might, for example, want to run different modules on different machines.
This is called when a module is about to be executed and each of the dependencies is checked.

Returns a list of instances of subclasses of :class:~pimlico.core.dependencies.base.SoftwareDependency,
representing the libraries that this module depends on.

Take care when providing dependency classes that you don’t put any import statements at the top of the
Python module that will make loading the dependency type itself dependent on runtime dependencies.
You’ll want to run import checks by putting import statements within this method.

You should call the super method for checking superclass dependencies.

get_input_software_dependencies ()
Collects library dependencies from the input datatypes to this module, which will need to be satisfied for
the module to be run.

Unlike get_software dependencies (), it shouldn’t need to be overridden by subclasses, since it
just collects the results of getting dependencies from the datatypes.

check_ready to_run()
Called before a module is run, or if the ‘check’ command is called. This will only be called after all library
dependencies have been confirmed ready (see :method:get_software_dependencies).

Essentially, this covers any module-specific checks that used to be in check_runtime_dependencies() other
than library installation (e.g. checking models exist).

Always call the super class’ method if you override.

Returns a list of (name, description) pairs, where the name identifies the problem briefly and the description
explains what’s missing and (ideally) how to fix it.

get_detailed_status()
Returns a list of strings, containing detailed information about the module’s status that is specific to the
module type. This may include module-specific information about execution status, for example.

1.5. API Documentation 117

Pimlico Documentation, Release 0.8

Subclasses may override this to supply useful (human-readable) information specific to the module type.
They should called the super method.

reset_execution ()
Remove all output data and metadata from this module to make a fresh start, as if it’s never been executed.

May be overridden if a module has some side effect other than creating/modifying things in its output di-
rectory(/ies), but overridden methods should always call the super method. Occasionally this is necessary,
but most of the time the base implementation is enough.

classmethod get_key info_table()
Add the stages into the key info table.

get_next_stage ()
If there are more stages to be executed, returns a pair of the module info and stage definition. Otherwise,
returns (None, None)

status
is_locked ()

Returns True is the module is currently locked from execution

multistage_module (multistage_module_type_name, module_stages, use_stage_option_names=False,

module_readable_name=None)
Factory to build a multi-stage module type out of a series of stages, each of which specifies a module type for

the stage. The stages should be a list of ModuleStage objects.

class ModuleStage (name, module_info_cls, connections=None, output_connections=None, op-

tion_connections=None, use_stage_option_names=False)
Bases: object

A single stage in a multi-stage module.

If no explicit input connections are given, the default input to this module is connected to the default output
from the previous.

Connections can be given as a list of ModuleConnections.

Output connections specify that one of this module’s outputs should be used as an output from the multi-stage
module. Optional outputs for the multi-stage module are not currently supported (though could in theory be
added later). This should be a list of ModuleOutputConnection s. If none are given for any of the stages,
the module will have a single output, which is the default output from the last stage.

Option connections allow you to specify the names that are used for the multistage module’s options that get
passed through to this stage’s module options. Simply specify a dict for option_connections where the
keys are names module options for this stage and the values are the names that should be used for the multistage
module’s options.

You may map multiple options from different stages to the same option name for the multistage module. This
will result in the same option value being passed through to both stages. Note that help text, option type, option
processing, etc will be taken from the first stage’s option (in case the two options aren’t identical).

Options not explicitly mapped to a name will use the name <stage_name>_<option_name>. If
use_stage_option_names=True, this prefix will not be added: the stage’s option names will be used
directly as the option name of the multistage module. Note that there is a danger of clashing option names with
this behaviour, so only do it if you know the stages have distinct option names (or should share their values
where the names overlap).

class ModuleConnection

Bases: object

118

Chapter 1. Contents

Pimlico Documentation, Release 0.8

class InternalModuleConnection (input_name, output_name=None, previous_module=None)
Bases: pimlico.core.modules.multistage.ModuleConnection

Connection between the output of one module in the multi-stage module and the input to another.

May specify the name of the previous module that a connection should be made to. If this is not given, the
previous module in the sequence will be assumed.

If output_name=None, connects to the default output of the previous module.

class ModulelInputConnection (stage_input_name=None, main_input_name=None)
Bases: pimlico.core.modules.multistage.ModuleConnection

Connection of a sub-module’s input to an input to the multi-stage module.

If main_input_name is not given, the name for the input to the multistage module will be identical to the stage
input name. This might lead to unintended behaviour if multiple inputs end up with the same name, so you can
specify a different name if necessary to avoid clashes.

If multiple inputs (e.g. from different stages) are connected to the same main input name, they will take input
from the same previous module output. Nothing clever is done to unify the type requirements, however: the first
stage’s type requirement is used for the main module’s input.

If stage_input_name is not given, the module’s default input will be connected.

class ModuleOutputConnection (stage_output_name=None, main_output_name=None)
Bases: object

Specifies the connection of a sub-module’s output to the multi-stage module’s output. Works in a similar way to
ModulelnputConnection.

exception MultistageModulePreparationError
Bases: exceptions.Exception

pimlico.core.modules.options module

Utilities and type processors for module options.

opt_type_help (help_text)
Decorator to add help text to functions that are designed to be used as module option processors. The help text
will be used to describe the type in documentation.

format_option_type (f)

str_to_bool (string)
Convert a string value to a boolean in a sensible way. Suitable for specifying booleans as options.

Parameters string - input string
Returns boolean value

choose_from_1list (options, name=None)
Utility for option processors to limit the valid values to a list of possibilities.

comma_separated_list (item_type=<type ’str’>, length=None)
Option processor type that accepts comma-separated lists of strings. Each value is then parsed according to the
given item_type (default: string).

comma_separated_strings (string)

json_string (string)

1.5. API Documentation 119

Pimlico Documentation, Release 0.8

process_module_options (opt_def, opt_dict, module_type_name)
Utility for processing runtime module options. Called from module base class.

Parameters
* opt_def — dictionary defining available options
* opt_dict — dictionary of option values
* module_type_name — name for error output
Returns dictionary of processed options

exception ModuleOptionParseError
Bases: exceptions.Exception

Module contents

Core functionality for loading and executing different types of pipeline module.

pimlico.core.visualize package
Submodules
pimlico.core.visualize.deps module

class GraphvizDependency (**kwargs)
Bases: pimlico.core.dependencies.base.SystemCommandDependency

installation_instructions ()
Where a dependency can’t be installed programmatically, we typically want to be able to output instruc-
tions for the user to tell them how to go about doing it themselves. Any subclass that doesn’t provide an
automatic installation routine should override this to provide instructions.

You may also provide this even if the class does provide automatic installation. For example, you might
want to provide instructions for other ways to install the software, like a system-wide install. This instruc-
tions will be shown together with missing dependency information.

pimlico.core.visualize.status module

build_graph_with_status (pipeline, all=False)

Module contents

Visualization of pipelines using Graphviz.

This is not fully implemented yet. In fact, I've barely started. But you’ll find some indication of where I’'m going with
it on the Pimlico Wishlist.

Note: Do not import anything from subpackages unless you’re doing graph visualization, as they will trigger a check
for Graphviz and try to install it.

120 Chapter 1. Contents

Pimlico Documentation, Release 0.8

Note: A bug in pygraphviz means that automatic installation on Ubuntu (and perhaps other systems) gets in a twist
and leaves an unresolved dependency. If you have this problem and system-wide install is an option, just install with
sudo apt-get install python-pygraphviz.

Submodules
pimlico.core.config module

Reading of pipeline config from a file into the data structure used to run and manipulate the pipeline’s data.

class PipelineConfig (name, pipeline_config, local_config, filename=None, variant="main’, avail-
able_variants=[], log=None, all_filenames=None, module_aliases={}, lo-

cal_config_sources=None)
Bases: object

Main configuration for a pipeline, read in from a config file.
For details on how to write config files that get read by this class, see Pipeline config.

modules
List of module names, in the order they were specified in the config file.

module_dependencies
Dictionary mapping a module name to a list of the names of modules that it depends on for its inputs.

module_dependents
Opposite of module_dependencies. Returns a mapping from module names to a list of modules the depend
on the module.

get_dependent_modules (module_name, recurse=False, exclude=[])
Return a list of the names of modules that depend on the named module for their inputs.

If exclude is given, we don’t perform a recursive call on any of the modules in the list. For each item
we recurse on, we extend the exclude list in the recursive call to include everything found so far (in other
recursive calls). This avoids unnecessary recursion in complex pipelines.

If exclude=None, it is also passed through to recursive calls as None. Its default value of [/ avoids excessive
recursion from the top-level call, by allowing things to be added to the exclusion list for recursive calls.

Parameters recurse - include all transitive dependents, not just those that immediately de-
pend on the module.

append_module (module_info)
Add a moduleinfo to the end of the pipeline. This is mainly for use while loaded a pipeline from a config
file.

get_module_schedule ()
Work out the order in which modules should be executed. This is an ordering that respects dependencies,
so that modules are executed after their dependencies, but otherwise follows the order in which modules
were specified in the config.

Returns list of module names

reset_all modules ()
Resets the execution states of all modules, restoring the output dirs as if nothing’s been run.

1.5. API Documentation 121

Pimlico Documentation, Release 0.8

path_relative_to_config (path)
Get an absolute path to a file/directory that’s been specified relative to a config file (usually within the
config file).

Parameters path - relative path
Returns absolute path

static load (filename, local_config=None, variant="main’, override_local_config={})
Main function that loads a pipeline from a config file.

Parameters
* filename — file to read config from

* local_config — location of local config file, where we’ll read system-wide config.
Usually not specified, in which case standard locations are searched. When loading pro-
grammatically, you might want to give this

* variant — pipeline variant to load

* override_local_config — extra configuration values to override the system-wide
config

Returns

static load_local_config (filename=None, override={})
Load local config parameters. These are usually specified in a.pimlico file, but may be overridden by other
config locations, on the command line, or elsewhere programmatically.

static empty (local_config=None, override_local_config={}, override_pipeline_config={})
Used to programmatically create an empty pipeline. It will contain no modules, but provides a gateway to
system info, etc and can be used in place of a real Pimlico pipeline.

Parameters

* local_config - filename to load local config from. If not given, the default locations
are searched

* override_local_config — manually override certain local config parameters. Dict
of parameter values

Returns the PipelineConfig instance

find_data_path (path, default=None)
Given a path to a data dir/file relative to a data store, tries taking it relative to various store base dirs. If it
exists in a store, that absolute path is returned. If it exists in no store, return None. If the path is already an
absolute path, nothing is done to it.

The stores searched are the long-term store and the short-term store, though in the future more valid data
storage locations may be added.

Parameters
* path — path to data, relative to store base

* default - usually, return None if no data is found. If default="short”, return path rela-
tive to short-term store in this case. If default="long”, long-term store.

Returns absolute path to data, or None if not found in any store

find_all_data_paths (path)

122 Chapter 1. Contents

Pimlico Documentation, Release 0.8

get_data_search_paths (path)
Like find_all_data_paths(), but returns a list of all absolute paths which this data path could correspond
to, whether or not they exist.

Parameters path — relative path within Pimlico directory structures
Returns list of string

get_storage_roots ()
Returns a list of all the (pipeline-specific) storage root locations known to the pipeline.

Currently, this is always [self.short_term_store, self-long_term_store], but in future we may have a more
flexible system that allows an unbounded number of storage locations.

step

enable_step ()
Enable super-verbose, interactive step mode.

::seealso:

Module :mod:pimlico.cli.debug
The debug module defines the behaviour of step mode.

exception PipelineConfigParseError (*args, **kwargs)
Bases: exceptions.Exception

General problems interpreting pipeline config

exception PipelineStructureError
Bases: exceptions.Exception

Fundamental structural problems in a pipeline.

exception PipelineCheckError (cause, *args, **kwargs)
Bases: exceptions.Exception

Error in the process of explicitly checking a pipeline for problems.

preprocess_config file (filename, variant="main’, initial_vars={})
Workhorse of the initial part of config file reading. Deals with all of our custom stuff for pipeline configs, such
as preprocessing directives and includes.

Parameters
* filename — file from which to read main config

e variant — name of a variant to load. The default (main) loads the main variant, which
always exists

* initial_vars - variable assignments to make available for substitution. This will be
added to by any vars sections that are read.

Returns tuple: raw config dict; list of variants that could be loaded; final vars dict; list of filenames
that were read, including included files; dict of docstrings for each config section

check_for_cycles (pipeline)
Basic cyclical dependency check, always run on pipeline before use.

check_release (release_str)
Check a release name against the current version of Pimlico to determine whether we meet the requirement.

check_pipeline (pipeline)

Checks a pipeline over for metadata errors, cycles, module typing errors and other problems. Called every time
a pipeline is loaded, to check the whole pipeline’s metadata is in order.

1.5. API Documentation 123

Pimlico Documentation, Release 0.8

Raises a PipelineCheckError if anything’s wrong.

get_dependencies (pipeline, modules, recursive=False, sources=False)
Get a list of software dependencies required by the subset of modules given.

If recursive=True, dependencies’ dependencies are added to the list too.
Parameters
* pipeline -
e modules - list of modules to check. If None, checks all modules

print_missing dependencies (pipeline, modules)
Check runtime dependencies for a subset of modules and output a table of missing dependencies.

Parameters

* pipeline -

* modules — list of modules to check. If None, checks all modules
Returns True if no missing dependencies, False otherwise

print_dependency_leaf problems (dep, local_config)

pimlico.core.logs module

get_log file (name)
Returns the path to a log file that may be used to output helpful logging info. Typically used to output verbose
error information if something goes wrong. The file can be found in the Pimlico log dir.

Parameters name — identifier to distinguish from other logs

Returns path

pimlico.core.paths module

abs_path_or_model_dir_path (path, model_type)

Module contents

pimlico.datatypes package
Subpackages

pimlico.datatypes.coref package
Submodules
pimlico.datatypes.coref.corenlp module

Datatypes for coreference resolution output. Based on Stanford CoreNLP’s coref output, so includes all the informa-
tion provided by that.

124 Chapter 1. Contents

Pimlico Documentation, Release 0.8

class CorefDocumentType (options, metadata)
Bases: pimlico.datatypes. jsondoc.JsonDocumentType

process_document (doc)

class CorefCorpus (base_dir, pipeline, **kwargs)
Bases: pimlico.datatypes. jsondoc.JsonDocumentCorpus

datatype_name = 'corenlp_coref'

data_point_type
alias of CorefDocument Type

class CorefCorpusWriter (base_dir, gzip=False, append=False, trust_length="False, encoding="utf-
8, **kwargs)
Bases: pimlico.datatypes.tar.TarredCorpusWriter
document to_raw data (data)

class Entity (id, mentions)
Bases: object

class Mention (id, sentence_num, start_index, end_index, text, type, position=None, animacy=None,

is_representative_mention=None, number=None, gender=None)
Bases: object

static from_json (json)

to_json_dict ()

pimlico.datatypes.coref.opennip module

Datatypes for coreference resolution output. Based on OpenNLP’s coref output, so includes all the information pro-
vided by that. This is a slight different set of information to CoreNLP. Currently, there’s no way to convert between
the two datatypes, but in future it will be easy to provide an adapter that carries across the information common to the
two (which for most purposes will be sufficient).

class CorefDocumentType (options, metadata)
Bases: pimlico.datatypes. jsondoc.JsonDocumentType

process_document (doc)

class CorefCorpus (base_dir, pipeline, **kwargs)
Bases: pimlico.datatypes. jsondoc.JsonDocumentCorpus

datatype_name = 'opennlp_coref'

data_point_type
alias of CorefDocument Type

class CorefCorpusWriter (base_dir, readable=False, **kwargs)
Bases: pimlico.datatypes. jsondoc.JsonDocumentCorpusiWriter

document_to_raw data (data)

class Entity (id, mentions, category=None, gender=None, gender_prob=None, number=None, num-

ber_prob=None)
Bases: object

get_head_woxrd (pronouns=['i’, 'you’, ’he’, ’she’, ’it’, 'we’, ’'they’, 'me’, "him’, ’her’, ’us’, 'them’,
‘myself’, "yourself’, "himself’, ’herself’, ’itself’, 'ourself’, "ourselves’, 'themselves’,
‘my’, 'your’, 'his’, ’its’, "it’s", ‘our’, 'their’, ‘mine’, ’yours’, ‘ours’, 'theirs’, ’this’,
‘that’, ’those’, 'these’])

1.5. API Documentation 125

Pimlico Documentation, Release 0.8

Retrieve a head word from the entity’s mentions if possible. Returns None if no suitable head word can be
found: e.g., if all mentions are pronouns.

Pronouns are filtered out using :data:pimlico.utils.linguistic. ENGLISH_PRONOUNS by default. You can
override this with the pronouns kwargs. If pronouns=None, no filtering is done.

to_json_dict ()
static from_json (json)
static from_java_object (0bj)

class Mention (sentence_num, start_index, end_index, text, gender=None, gender_prob=None, num-
ber=None, number_prob=None, head_start_index=None, head_end_index=None,

name_type=None)
Bases: object

static from_json (json)
to_json_dict ()

static from_java_object (0bj)

Module contents

OpenNLPCorefCorpus
aliasof pimlico.datatypes.coref.opennlp.CorefCorpus

OpenNLPCorefCorpusWriter
alias of pimlico.datatypes.coref.opennlp.CorefCorpusWriter

CoreNLPCorefCorpus
alias of pimlico.datatypes.coref.corenlp.CorefCorpus

CoreNLPCorefCorpusWriter
alias of pimlico.datatypes.coref.corenlp.CorefCorpusiriter

pimlico.datatypes.formatters package
Submodules
pimlico.datatypes.formatters.features module

class FeaturelistScoreFormatter (corpus)
Bases: pimlico.cli.browser.formatter.DocumentBrowserFormatter

DATATYPE
aliasof pimlico.datatypes. features.FeaturelListScoreDocument Type

format_document (doc)
Format a single document and return the result as a string (or unicode, but it will be converted to ASCII
for display).

Must be overridden by subclasses.

126 Chapter 1. Contents

data:pimlico.utils.linguistic.ENGLISH_PRONOUNS

Pimlico Documentation, Release 0.8

pimlico.datatypes.formatters.tokenized module

class TokenizedDocumentFormatter (corpus, raw_data=False)
Bases: pimlico.cli.browser.formatter.DocumentBrowserFormatter

DATATYPE
aliasof pimlico.datatypes.tokenized. TokenizedDocument Type

format_document (doc)
Format a single document and return the result as a string (or unicode, but it will be converted to ASCII
for display).

Must be overridden by subclasses.

class CharacterTokenizedDocumentFormatter (corpus, raw_data=False)
Bases: pimlico.cli.browser.formatter.DocumentBrowserFormatter

DATATYPE
aliasof pimlico.datatypes.tokenized.CharacterTokenizedDocumentType

format_document (doc)
Format a single document and return the result as a string (or unicode, but it will be converted to ASCII

for display).
Must be overridden by subclasses.

class SegmentedLinesFormatter (corpus)
Bases: pimlico.cli.browser.formatter.DocumentBrowserFormatter

DATATYPE
aliasof pimlico.datatypes.tokenized.SegmentedlLinesDocument Type

format_document (doc)
Format a single document and return the result as a string (or unicode, but it will be converted to ASCII

for display).

Must be overridden by subclasses.

Module contents
pimlico.datatypes.parse package
Submodules
pimlico.datatypes.parse.candc module

class CandcOutputCorpus (base_dir, pipeline, **kwargs)
Bases: pimlico.datatypes.tar.TarredCorpus

datatype _name = 'candc_output'

data_point_type
alias of CandcOutputDocument Type

class CandcOutputCorpusWriter (base_dir, gzip=False, append=False, trust_length=False,
encoding="utf-8’, **kwargs)
Bases: pimlico.datatypes.tar.TarredCorpusWriter

document_to_raw_data (data)

1.5. API Documentation 127

Pimlico Documentation, Release 0.8

pimlico.datatypes.parse.dependency module

class StanfordDependencyParseCorpus (base_dir, pipeline, **kwargs)
Bases: pimlico.datatypes. jsondoc.JsonDocumentCorpus

datatype_name = 'stanford dependency_parses'

data_ point_type
alias of StanfordDependencyParseDocumentType

class StanfordDependencyParseCorpusWriter (base_dir, readable=False, **kwargs)
Bases: pimlico.datatypes. jsondoc.JsonDocumentCorpuslWriter

document_to_raw_data (data)

class CoNLLDependencyParseCorpus (base_dir, pipeline, **kwargs)
Bases: pimlico.datatypes.word _annotations.WordAnnotationCorpus

10-field CoNLL dependency parse format (conllx) —i.e. post parsing.

Fields are: id (int), word form, lemma, coarse POS, POS, features, head (int), dep relation, phead (int), pdeprel
The last two are usually not used.

datatype_name = 'conll_dependency_parses'

data_point_type
alias of CoNLLDependencyParseDocument Type

class CoNLLDependencyParseCorpusWriter (base_dir, **kwargs)
Bases: pimlico.datatypes.word _annotations.WordAnnotationCorpusWriter

document_to_raw_data (data)

class CoNLLDependencyParseInputCorpus (base_dir, pipeline, **kwargs)
Bases: pimlico.datatypes.word _annotations.WordAnnotationCorpus

The version of the CoNLL format (conllx) that only has the first 6 columns, i.e. no dependency parse yet
annotated.

datatype name = 'conll_ dependency_ parse_inputs'

data_point_type
alias of CoNLLDependencyParseInputDocumentType

class CoNLLDependencyParselnputCorpusWriter (base_dir, **kwargs)
Bases: pimlico.datatypes.word_annotations.WordAnnotationCorpusWriter

document_to_raw_data (data)

Module contents

TODO Parse tress are temporary implementations that don’t actually parse the data, but just split it into
sentences.

class TreeStringsDocumentType (options, metadata)
Bases: pimlico.datatypes.documents.RawDocumentType

process_document (doc)

class ConstituencyParseTreeCorpus (base_dir, pipeline, **kwargs)
Bases: pimlico.datatypes.tar.TarredCorpus

128 Chapter 1. Contents

Pimlico Documentation, Release 0.8

Note that this is not fully developed yet. At the moment, you’ll just get, for each document, a list of the texts of
each tree. In future, they will be better represented.

datatype name = 'parse_ trees'

data_point_type
alias of TreeStringsDocument Type

class ConstituencyParseTreeCorpusWriter (base_dir, gzip=False, append=False,
trust_length=False, encoding="utf-8’, **kwargs)
Bases: pimlico.datatypes.tar.TarredCorpusWriter

document_to_raw data (data)

class CandcOutputCorpus (base_dir, pipeline, **kwargs)
Bases: pimlico.datatypes.tar.TarredCorpus

datatype name = 'candc_output'

data_point_type
alias of CandcOutputDocument Type

class CandcOutputCorpusWriter (base_dir, gzip=False, append=False, trust_length=False,
encoding="utf-8’, **kwargs)
Bases: pimlico.datatypes.tar.TarredCorpusWriter

document_to_raw_data (data)

class StanfordDependencyParseCorpus (base_dir, pipeline, **kwargs)
Bases: pimlico.datatypes. jsondoc.JsonDocumentCorpus

datatype_name = 'stanford dependency_parses'

data_point_type
alias of StanfordDependencyParseDocumentType

class StanfordDependencyParseCorpusWriter (base_dir, readable=False, **kwargs)
Bases: pimlico.datatypes. jsondoc.JsonDocumentCorpusWriter

document_to_raw_data (data)

class CoNLLDependencyParseCorpus (base_dir, pipeline, **kwargs)
Bases: pimlico.datatypes.word _annotations.WordAnnotationCorpus

10-field CoNLL dependency parse format (conllx) —i.e. post parsing.

Fields are: id (int), word form, lemma, coarse POS, POS, features, head (int), dep relation, phead (int), pdeprel
The last two are usually not used.

datatype _name = 'conll_dependency_ parses'

data_point_type
alias of CoNLLDependencyParseDocument Type

class CoNLLDependencyParseCorpusWriter (base_dir, **kwargs)
Bases: pimlico.datatypes.word_annotations.WordAnnotationCorpusWriter

document_to_raw_data (data)

class CoNLLDependencyParselInputCorpus (base_dir, pipeline, **kwargs)
Bases: pimlico.datatypes.word_annotations.WordAnnotationCorpus

The version of the CoNLL format (conllx) that only has the first 6 columns, i.e. no dependency parse yet
annotated.

datatype _name = 'conll_dependency_parse_inputs'

1.5. API Documentation 129

Pimlico Documentation, Release 0.8

data_point_type
alias of CoNLLDependencyParseInputDocument Type

class CoNLLDependencyParselInputCorpusWriter (base_dir, **kwargs)
Bases: pimlico.datatypes.word_annotations.WordAnnotationCorpusWriter

document_to_raw data (data)

Submodules
pimlico.datatypes.arrays module
Wrappers around Numpy arrays and Scipy sparse matrices.

class NumpyArray (base_dir, pipeline, **kwargs)
Bases: pimlico.datatypes.files.NamedFileCollection

datatype_name = 'numpy_array'
filenames = ['array.npy']
array

get_software_dependencies ()
Check that all software required to read this datatype is installed and locatable. This is separate to metadata
config checks, so that you don’t need to satisfy the dependencies for all modules in order to be able to run
one of them. You might, for example, want to run different modules on different machines. This is called
when a module is about to be executed and each of the dependencies is checked.

Returns a list of instances of subclasses of :class:~pimlico.core.dependencies.base.SoftwareDependency,
representing the libraries that this module depends on.

Take care when providing dependency classes that you don’t put any import statements at the top of the
Python module that will make loading the dependency type itself dependent on runtime dependencies.
You’ll want to run import checks by putting import statements within this method.

You should call the super method for checking superclass dependencies.

class NumpyArrayWriter (base_dir, additional_name=None)
Bases: pimlico.datatypes.base.PimlicoDatatypeWriter

set_array (array)

class ScipySparseMatrix (base_dir, pipeline, **kwargs)
Bases: pimlico.datatypes.base.PimlicoDatatype

Wrapper around Scipy sparse matrices. The matrix loaded is always in COO format — you probably want to
convert to something else before using it. See scipy docs on sparse matrix conversions.

datatype name = 'scipy sparse_array'
filenames = ['array.mtx']
array

get_software_dependencies ()
Check that all software required to read this datatype is installed and locatable. This is separate to metadata
config checks, so that you don’t need to satisfy the dependencies for all modules in order to be able to run
one of them. You might, for example, want to run different modules on different machines. This is called
when a module is about to be executed and each of the dependencies is checked.

130 Chapter 1. Contents

Pimlico Documentation, Release 0.8

Returns a list of instances of subclasses of :class:~pimlico.core.dependencies.base.SoftwareDependency,
representing the libraries that this module depends on.

Take care when providing dependency classes that you don’t put any import statements at the top of the
Python module that will make loading the dependency type itself dependent on runtime dependencies.
You’ll want to run import checks by putting import statements within this method.

You should call the super method for checking superclass dependencies.

class ScipySparseMatrixWriter (base_dir, additional_name=None)
Bases: pimlico.datatypes.base.PimlicoDatatypeWriter

set_matrix (mat)

pimlico.datatypes.base module

Datatypes provide interfaces for reading (and in some cases writing) datasets. At their most basic, they define a way
to iterate over a dataset linearly. Some datatypes may also provide other functionality, such as random access or
compression.

As much as possible, Pimlico pipelines should use standard datatypes to connect up the output of modules with the
input of others. Most datatypes have a lot in common, which should be reflected in their sharing common base classes.
Custom datatypes will be needed for most datasets when they’re used as inputs, but as far as possible, these should be
converted into standard datatypes like TarredCorpus, early in the pipeline.

Note: The following classes were moved to core in version 0.6rc

class PimlicoDatatype (base_dir, pipeline, module=None, additional_name=None,

use_main_metadata=False, **kwargs)
Bases: object

The abstract superclass of all datatypes. Provides basic functionality for identifying where data should be stored
and such.

Datatypes are used to specify the routines for reading the output from modules. They’re also used to specify
how to read pipeline inputs. Most datatypes that have data simply read it in when required. Some (in particular
those used as inputs) need a preparation phase to be run, where the raw data itself isn’t sufficient to implement
the reading interfaces required. In this case, they should override prepare_data().

Datatypes may require/allow options to be set when they’re used to read pipeline inputs. These are specified, in
the same way as module options, by input_module_options on the datatype class.

Datatypes may supply a set of additional datatypes. These should be guaranteed to be available if the main
datatype is available. They must require no extra processing to be made available, unless that is done on the fly
while reading the datatype (like a filter) or while the main datatype is being written.

Additional datatypes can be accessed in config files by specifying the main datatype (as a previous module,
optionally with an output name) and the additional datatype name in the form main_datatype->additional_name.
Multiple additional names may be given, causing the next name to be looked up as an additional datatype of the
initially loaded additional datatype. E..g main_datatype->additional0->additionall.

To avoid conflicts in the metadata between datatypes using the same directory, datatypes loaded as additional
datatypes have their additional name available to them and use it as a prefix to the metadata filename.

If use_main_metadata=True on an additional datatype, the same metadata will be read as for the main datatype
to which this is an additional datatype.

module is the ModuleInfo instance for the pipeline module that this datatype was produced by. It may be None,
if the datatype wasn’t instantiated by a module. It is not required to be set if you’re instantiating a datatype in

1.5. API Documentation 131

Pimlico Documentation, Release 0.8

some context other than module output. It should generally be set for input datatypes, though, since they are
treated as being created by a special input module.

requires_data_ preparation = False

input_module_options = {}
Override to provide shell commands specific to this datatype. Should include the superclass’ list.

shell commands = []
List of additional datatypes provided by this one, given as (name, datatype class) pairs. For each of these, a
call to get_additional_datatype(name) (once the main datatype is ready) should return a datatype instance
that is also ready.

supplied_additional = []
Most datatype classes define their own type of corpus, which is often a subtype of some other. Some,
however, emulate another type and it is that type that should be considered the be the type of the dataset,
not the class itself.

For example, TarredCorpusFilter dynamically produces something that looks like a TarredCorpus, and
further down the pipeline, if its type is need, it should be considered to be a TarredCorpus.

Most of the time, this can be left empty, but occasionally it needs to be set.
emulated _datatype = None
datatype _name = 'base_datatype'

metadata
Read in metadata from a file in the corpus directory.

Note that this is no longer cached in memory. We need to be sure that the metadata values returned are
always up to date with what is on disk, so always re-read the file when we need to get a value from the
metadata. Since the file is typically small, this is unlikely to cause a problem. If we decide to return to
cacheing the metadata dictionary in future, we will need to make sure that we can never run into problems
with out-of-date metadata being returned.

get_required_paths ()
Returns a list of paths to files that should be available for the data to be read. The base data_ready()
implementation checks that these are all available and, if the datatype is used as an input to a pipeline
and requires a data preparation routine to be run, data preparation will not be executed until these files are
available.

Paths may be absolute or relative. If relative, they refer to files within the data directory and data_ready()
will fail if the data dir doesn’t exist.

Returns list of absolute or relative paths

get_software_dependencies ()
Check that all software required to read this datatype is installed and locatable. This is separate to metadata
config checks, so that you don’t need to satisfy the dependencies for all modules in order to be able to run
one of them. You might, for example, want to run different modules on different machines. This is called
when a module is about to be executed and each of the dependencies is checked.

Returns a list of instances of subclasses of :class:~pimlico.core.dependencies.base.SoftwareDependency,
representing the libraries that this module depends on.

Take care when providing dependency classes that you don’t put any import statements at the top of the
Python module that will make loading the dependency type itself dependent on runtime dependencies.
You’ll want to run import checks by putting import statements within this method.

You should call the super method for checking superclass dependencies.

prepare_data (output_dir, log)

132 Chapter 1. Contents

Pimlico Documentation, Release 0.8

classmethod create_from_options (base_dir, pipeline, options={}, module=None)

data_ready ()
Check whether the data corresponding to this datatype instance exists and is ready to be read.

Default implementation just checks whether the data dir exists. Subclasses might want to add their own
checks, or even override this, if the data dir isn’t needed.

get_detailed_status()
Returns a list of strings, containing detailed information about the data. Only called if data_ready() ==
True.

Subclasses may override this to supply useful (human-readable) information specific to the datatype. They
should called the super method.

classmethod datatype_ full_class_name ()
The fully qualified name of the class for this datatype, by which it is reference in config files. Gener-
ally, datatypes don’t need to override this, but type requirements that take the place of datatypes for type
checking need to provide it.

instantiate_additional_datatype (name, additional_name)
Default implementation just assumes the datatype class can be instantiated using the default constructor,
with the same base dir and pipeline as the main datatype. Options given to the main datatype are passed
down to the additional datatype.

classmethod check_type (supplied_type)
Method used by datatype type-checking algorithm to determine whether a supplied datatype (given as a
class, which is a subclass of PimlicoDatatype) is compatible with the present datatype, which is being
treated as a type requirement.

Typically, the present class is a type requirement on a module input and supplied_type is the type provided
by a previous module’s output.

The default implementation simply checks whether supplied_type is a subclass of the present class. Sub-
classes may wish to impose different or additional checks.

Parameters supplied_type — type provided where the present class is required, or datatype
instance

Returns True if the check is successful, False otherwise

classmethod type_checking name ()
Supplies a name for this datatype to be used in type-checking error messages. Default implementation just
provides the class name. Classes that override check_supplied_type() may want to override this too.

classmethod full_datatype_name ()
Returns a string/unicode name for the datatype that includes relevant sub-type information. The default
implementation just uses the attribute datatype_name, but subclasses may have more detailed information
to add. For example, iterable corpus types also supply information about the data-point type.

class DynamicOutputDatatype
Bases: object

Types of module outputs may be specified as a subclass of PimlicoDatatype, or alternatively as an instance
of DynamicOutputType. In this case, get_datatype() is called when the output datatype is needed, passing in
the module info instance for the module, so that a specialized datatype can be produced on the basis of options,
input types, etc.

The dynamic type must provide certain pieces of information needed for typechecking.
datatype_name = None

get_datatype (module_info)

1.5. API Documentation 133

Pimlico Documentation, Release 0.8

get_base_datatype_class ()
If it’s possible to say before the instance of a Modulelnfo is available what base datatype will be produced,
implement this to return the class. By default, it returns None.

If this information is available, it will be used in documentation.

class DynamicInputDatatypeRequirement
Bases: object

Types of module inputs may be given as a subclass of PimlicoDatatype, a tuple of datatypes, or an in-
stance a DynamicInputDatatypeRequirement subclass. In this case, check_type(supplied_type) is called during
typechecking to check whether the type that we’ve got conforms to the input type requirements.

Additionally, if datatype_doc_info is provided, it is used to represent the input type constraints in documentation.

datatype doc_info = None
check_type (supplied_type)

type_checking_ name ()
Supplies a name for this datatype to be used in type-checking error messages. Default implementation just
provides the class name. Subclasses may want to override this too.

class MultipleInputs (datatype_requirements)
Bases: object

An input datatype that can be used as an item in a module’s inputs, which lets the module accept an unbounded
number of inputs, all satisfying the same datatype requirements. When writing the inputs in a config file, they
can be specified as a comma-separated list of the usual type of specification (module name, with optional output
name). Each item in the list must point to a datatype that satisfies the type-checking.

The list may also include (or entirely consist of) a base module name from the pipeline that has been expanded
into multiple modules according to alternative parameters (the type separated by vertical bars, see Multiple
parameter values). Use the notation *name, where name is the base module name, to denote all of the expanded
module names as inputs. These are treated as if you’d written out all of the expanded module names separated
by commas.

In a config file, if you need the same input specification to be repeated multiple times in a list, instead of writing
it out explicitly you can use a multiplier to repeat it N times by putting «N after it. This is particularly useful
when N is the result of expanding module variables, allowing the number of times an input is repeated to depend
on some modvar expression.

When get_input() is called on the module, instead of returning a single datatype, a list of datatypes is returned.

class PimlicoDatatypeWriter (base_dir, additional_name=None)
Bases: object

Abstract base class fo data writer associated with Pimlico datatypes.

require_tasks (*tasks)
Add a name or multiple names to the list of output tasks that must be completed before writing is finished

task_complete (task)
incomplete_tasks

write_metadata ()
subordinate_additional_ name (name)

class IterableCorpus (*args, **kwargs)
Bases: pimlico.datatypes.base.PimlicoDatatype

134 Chapter 1. Contents

Pimlico Documentation, Release 0.8

Superclass of all datatypes which represent a dataset that can be iterated over document by document (or data-
point by datapoint - what exactly we’re iterating over may vary, though documents are most common).

The actual type of the data depends on the subclass: it could be, e.g. coref output, etc. Information about the
type of individual documents is provided by document_type and this is used in type checking.

At creation time, length should be provided in the metadata, denoting how many documents are in the dataset.
datatype_name = 'iterable_corpus'

data_point_type
alias of pimlico.datatypes.documents.RawDocument Type

shell_commands = [<pimlico.datatypes.base.CountInvalidCmd object>]

get_detailed_status()
Returns a list of strings, containing detailed information about the data. Only called if data_ready() ==
True.

Subclasses may override this to supply useful (human-readable) information specific to the datatype. They
should called the super method.

classmethod check_type (supplied_type)
Override type checking to require that the supplied type have a document type that is compatible with (i.e.
a subclass of) the document type of this class.

classmethod type_checking name ()
Supplies a name for this datatype to be used in type-checking error messages. Default implementation just
provides the class name. Classes that override check_supplied_type() may want to override this too.

classmethod full_datatype_name ()
Returns a string/unicode name for the datatype that includes relevant sub-type information. The default
implementation just uses the attribute datatype_name, but subclasses may have more detailed information
to add. For example, iterable corpus types also supply information about the data-point type.

process_document_data with_datatype (data)
Applies the corpus’ datatype’s process_document() method to the raw data :param data: :return:

class IterableCorpusWriter (base_dir, additional_name=None)
Bases: pimlico.datatypes.base.PimlicoDatatypeWriter

class InvalidDocument (module_name, error_info=None)
Bases: object

Widely used in Pimlico to represent an empty document that is empty not because the original input document
was empty, but because a module along the way had an error processing it. Document readers/writers should
generally be robust to this and simply pass through the whole thing where possible, so that it’s always possible
to work out, where one of these pops up, where the error occurred.

static load (fext)

static invalid document_or text (rexr)
If the text represents an invalid document, parse it and return an InvalidDocument object. Otherwise, return
the text as is.

exception DatatypeloadError
Bases: exceptions.Exception

exception DatatypeWriteError
Bases: exceptions.Exception

load_datatype (path)
Try loading a datatype class for a given path. Raises a DatatypeLoadError if it’s not a valid datatype path.

1.5. API Documentation 135

Pimlico Documentation, Release 0.8

pimlico.datatypes.caevo module

class CaevoCorpus (base_dir, pipeline, **kwargs)

Bases: pimlico.datatypes.tar.TarredCorpus

Datatype for Caevo output. The output is stored exactly as it comes out from Caevo, in an XML format. This
datatype reads in that XML and provides easy access to its components.

Since we simply store the XML that comes from Caevo, there’s no corresponding corpus writer. The data is
output using a :class:pimlico.datatypes.tar. TarredCorpusWriter.

data_point_type
alias of CaevoDocument Type

pimlico.datatypes.core module

Some basic core datatypes that are commonly used for simple datatypes, file types, etc.

class SingleTextDocument (base_dir, pipeline, module=None, additional_name=None,

use_main_metadata=False, **kwargs)
Bases: pimlico.datatypes.files.NamedFileCollection

datatype name = 'single_doc'
filenames = ['data.txt']

read_data ()

class SingleTextDocumentWriter (base_dir, **kwargs)

Bases: pimlico.datatypes.base.PimlicoDatatypeWriter

class Dict (base_dir, pipeline, module=None, additional_name=None, use_main_metadata=False,

**kwargs)
Bases: pimlico.datatypes.files.NamedFileCollection

Simply stores a Python dict, pickled to disk.

datatype _name = 'dict'
filenames = ['data']
data

class DictWriter (base_dir, **kwargs)

Bases: pimlico.datatypes.base.PimlicoDatatypeWriter

class StringLlist (base_dir, pipeline, module=None, additional_name=None,

use_main_metadata=False, **kwargs)
Bases: pimlico.datatypes.base.PimlicoDatatype

Simply stores a Python list of strings, written out to disk in a readable form. Not the most efficient format, but
if the list isn’t humungous it’s OK (e.g. storing vocabularies).

datatype name = 'string list'

data_ready ()
Check whether the data corresponding to this datatype instance exists and is ready to be read.

Default implementation just checks whether the data dir exists. Subclasses might want to add their own
checks, or even override this, if the data dir isn’t needed.

path
data

136

Chapter 1. Contents

Pimlico Documentation, Release 0.8

class StringListWriter (base_dir, **kwargs)
Bases: pimlico.datatypes.base.PimlicoDatatypeWriter

pimlico.datatypes.dictionary module

This module implements the concept of Dictionary — a mapping between words and their integer ids.

The implementation is based on Gensim, because Gensim is wonderful and there’s no need to reinvent the wheel. We
don’t use Gensim’s data structure directly, because it’s unnecessary to depend on the whole of Gensim just for one
data structure.

class Dictionary (base_dir, pipeline, **kwargs)
Bases: pimlico.datatypes.base.PimlicoDatatype

Dictionary encapsulates the mapping between normalized words and their integer ids.
datatype _name = 'dictionary'
get_data()

data_ready ()
Check whether the data corresponding to this datatype instance exists and is ready to be read.

Default implementation just checks whether the data dir exists. Subclasses might want to add their own
checks, or even override this, if the data dir isn’t needed.

get_detailed_status()
Returns a list of strings, containing detailed information about the data. Only called if data_ready() ==
True.

Subclasses may override this to supply useful (human-readable) information specific to the datatype. They
should called the super method.

class DictionaryWriter (base_dir)
Bases: pimlico.datatypes.base.PimlicoDatatypeWriter

add_documents (documents, prune_at=2000000)

filter (threshold=None, no_above=None, limit=None)

pimlico.datatypes.documents module

Document types used to represent datatypes of individual documents in an IterableCorpus or subtype.

class DataPointType (options, metadata)
Bases: object

Base data-point type for iterable corpora. All iterable corpora should have data-point types that are subclasses

of this.
input_module_options = {}
formatters = []

List of (name, cls_path) pairs specifying a standard set of formatters that the user might want to choose
from to view a dataset of this type. The user is not restricted to this set, but can easily choose these by
name, instead of specifying a class path themselves. The first in the list is the default used if no formatter
is specified. Falls back to DefaultFormatter if empty

1.5. API Documentation 137

Pimlico Documentation, Release 0.8

class RawDocumentType (options, metadata)

Bases: pimlico.datatypes.documents.DataPointType
Base document type. All document types for tarred corpora should be subclasses of this.

It may be used itself as well, where documents are just treated as raw data, though most of the time it will be
appropriate to use subclasses to provide more information and processing operations specific to the datatype.

The process_document () method produces a data structure in the internal format appropriate for the data
point type.

A problem

If a subclassed type produces an internal data structure that does not work as a sub-type (using duck-typing-
style inheritance principles) of its parent type, we can run into problems. See [this comment](https://github.
com/markgw/pimlico/issues/1#issuecomment-383620759) for discussion of a solution to be introduced.

I therefore am not going to solve this now: you just need to work around it.

process_document (doc)

class RawTextDocumentType (options, metadata)

Bases: pimlico.datatypes.documents.TextDocumentType

Subclass of TextDocumentType used to indicate that the text hasn’t been processed (tokenized, etc). Note that
text that has been tokenized, parsed, etc does not used subclasses of this type, so they will not be considered
compatible if this type is used as a requirement.

pimlico.datatypes.embeddings module

class Vocab (word, index, count=0)

Bases: object

A single vocabulary item, used internally for collecting per-word frequency info. A simplified version of Gen-
sim’s Vocab.

class Embeddings (base_dir, pipeline, **kwargs)

Bases: pimlico.datatypes.base.PimlicoDatatype

Datatype to store embedding vectors, together with their words. Based on Gensim’s KeyedVectors object,
but adapted for use in Pimlico and so as not to depend on Gensim. (This means that this can be used more
generally for storing embeddings, even when we’re not depending on Gensim.)

Provides a method to map to Gensim’s KeyedVectors type for compatibility.

Doesn’t provide all of the functionality of KeyedVectors, since the main purpose of this is for storage of
vectors and other functionality, like similarity computations, can be provided by utilities or by direct use of
Gensim.

vectors
normed_vectors
vector_size
index2vocab
index2word
vocab

word_vec (word)
Accept a single word as input. Returns the word’s representation in vector space, as a 1D numpy array.

138

Chapter 1. Contents

https://github.com/markgw/pimlico/issues/1#issuecomment-383620759
https://github.com/markgw/pimlico/issues/1#issuecomment-383620759

Pimlico Documentation, Release 0.8

word_vecs (words)
Accept multiple words as input. Returns the words’ representations in vector space, as a 1D numpy array.

to_keyed vectors ()

class EmbeddingsWriter (base_dir, **kwargs)
Bases: pimlico.datatypes.base.PimlicoDatatypeWriter

write_vectors (arr)
Write out vectors from a Numpy array

write_word_counts (word_counts)
Write out vocab from a list of words with counts.

Parameters word_counts — list of (unicode, int) pairs giving each word and its count. Vocab
indices are determined by the order of words

write_vocab_list (vocab_items)
Write out vocab from a list of vocab items (see Vocab).

Parameters vocab_items — list of ““Vocab“‘s

write_keyed_vectors (*kvecs)
Write both vectors and vocabulary straight from Gensim’s KeyedVectors data structure. Can accept
multiple objects, which will then be concatenated in the output.

pimlico.datatypes.features module

class KeyValuelistDocumentType (options, metadata)
Bases: pimlico.datatypes.documents.RawDocumentType

process_document (doc)

class KeyValuelistCorpus (base_dir, pipeline, **kwargs)
Bases: pimlico.datatypes.tar.TarredCorpus

datatype _name = 'key_value_lists'

data_point_type
alias of KeyValuelListDocument Type

class KeyValuelistCorpusWriter (base_dir, separator="", fv_separator="=", **kwargs)
Bases: pimlico.datatypes.tar.TarredCorpusiWriter

document_to_raw data (data)

class TermFeaturelistDocumentType (options, metadata)
Bases: pimlico.datatypes. features.KeyValueListDocumentType

process_document (doc)

class TermFeaturelistCorpus (base_dir, pipeline, **kwargs)
Bases: pimlico.datatypes. features.KeyValueListCorpus

Special case of KeyValueListCorpus, where one special feature “term” is always present and the other feature
types are counts of the occurrence of a particular feature with this term in each data point.

datatype_name = 'term feature_lists'

data_point_type
alias of TermFeatureListDocument Type

1.5. API Documentation 139

Pimlico Documentation, Release 0.8

class TermFeaturelistCorpusWriter (base_dir, **kwargs)
Bases: pimlico.datatypes. features.KeyValueListCorpushWriter

document_to_raw_data (data)

class IndexedTermFeatureListDataPointType (options, metadata)
Bases: pimlico.datatypes.documents.DataPointType

class IndexedTermFeatureListCorpus (*args, **kwargs)
Bases: pimlico.datatypes.base.IterableCorpus

Term-feature instances, indexed by a dictionary, so that all that’s stored is the indices of the terms and features
and the feature counts for each instance. This is iterable, but, unlike TermFeatureListCorpus, doesn’t iterate
over documents. Now that we’ve filtered extracted features down to a smaller vocab, we put everything in one
big file, with one data point per line.

Since we’re now storing indices, we can use a compact format that’s fast to read from disk, making iterating
over the dataset faster than if we had to read strings, look them up in the vocab, etc.

By default, the ints are stored as C longs, which use 4 bytes. If you know you don’t need ints this big, you can
choose 1 or 2 bytes, or even 8 (long long). By default, the ints are unsigned, but they may be signed.

data_point_type
alias of TndexedTermFeatureListDataPointType

term_dictionary
feature_dictionary

class IndexedTermFeatureListCorpusWriter (base_dir, term_dictionary, feature_dictionary,
bytes=4, signed=False, index_input=False,

*tkwargs)
Bases: pimlico.datatypes.base.IterableCorpusWriter

index_input=True means that the input terms and feature names are already mapped to dictionary indices, so are
assumed to be ints. Otherwise, inputs will be looked up in the appropriate dictionary to get an index.

write_dictionaries ()
add_data_points (iterable)

class FeatureListScoreDocumentType (options, metadata)
Bases: pimlico.datatypes.documents.RawDocument Type

Document type that stores a list of features, each associated with a floating-point score. The feature lists are
simply lists of indices to a feature set for the whole corpus that includes all feature types and which is stored
along with the dataset. These may be binary features (present or absent for each data point), or may have a
weight associated with them. If they are binary, the returned data will have a weight of 1 associated with each.

A corpus of this type can be used to train, for example, a regression.

If scores and weights are passed in as Decimal objects, they will be stored as strings. If they are floats, they will
be converted to Decimals via their string representation (avoiding some of the oddness of converting between
binary and decimal representations). To avoid loss of precision, pass in all scores and weights as Decimal
objects.

formatters = [('features', 'pimlico.datatypes.formatters.features.FeatureListScoreForm
process_document (doc)

class FeatureListScoreCorpus (base_dir, pipeline, **kwargs)
Bases: pimlico.datatypes.tar.TarredCorpus

datatype_name = 'scored_weight_feature_lists'

140 Chapter 1. Contents

Pimlico Documentation, Release 0.8

data_point_type
alias of FeaturelistScoreDocument Type

>

class FeatureListScoreCorpusWriter (base_dir, features, separator=":’, index_input=False,

**kwargs)
Bases: pimlico.datatypes.tar.TarredCorpusiWriter

Input should be a list of data points. Each is a (score, feature list) pair, where score is a Decimal, or other
numeric type. Feature list is a list of (feature name, weight) pairs, or just feature names. If weights are not
given, they will default to 1 when read in (but no weight is stored).

If index_input=True, it is assumed that feature IDs will be given instead of feature names. Otherwise, the feature
names will be looked up in the feature list. Any features not found in the feature type list will simply be skipped.

document_to_raw_ data (data)

pimlico.datatypes.files module

class File (base_dir, pipeline, module=None, additional_name=None, use_main_metadata=False,
**kwargs)
Bases: pimlico.datatypes.base.PimlicoDatatype

Simple datatype that supplies a single file, providing the path to it. Use FileCollection with a single file
where possible.

This is an abstract class: subclasses need to provide a way of getting to (e.g. storing) the filename in question.

This overlaps somewhat with FileCollection, but is mainly here for backwards compatibility. Future
datatypes should prefer the use of FileCollection.

datatype name = 'file'

data_ready ()
Check whether the data corresponding to this datatype instance exists and is ready to be read.

Default implementation just checks whether the data dir exists. Subclasses might want to add their own
checks, or even override this, if the data dir isn’t needed.

absolute_path

class NamedFileCollection (base_dir, pipeline, module=None, additional_name=None,

use_main_metadata=False, **kwargs)
Bases: pimlico.datatypes.base.PimlicoDatatype

Abstract base datatype for datatypes that store a fixed collection of files, which have fixed names (or at least
names that can be determined from the class). Very many datatypes fall into this category. Overriding this base
class provides them with some common functionality, including the possibility of creating a union of multiple
datatypes.

The attribute £ilenames should specify a list of filenames contained by the datatype.

All files are contained in the datatypes data directory. If files are stored in subdirectories, this may be specified
in the list of filenames using / s. (Always use forward slashes, regardless of the operating system.)

datatype name = 'file collection'
filenames = []

data_ready ()
Check whether the data corresponding to this datatype instance exists and is ready to be read.

1.5. API Documentation 141

Pimlico Documentation, Release 0.8

Default implementation just checks whether the data dir exists. Subclasses might want to add their own
checks, or even override this, if the data dir isn’t needed.

get_absolute_path (filename)
absolute filenames
read_file (filename=None, mode="r")

read_files (mode='r’)

class NamedFileCollectionWriter (base_dir)

Bases: pimlico.datatypes.base.PimlicoDatatypeWriter
filenames = []
write_file (filename, data)

get_absolute_path (filename)

named_file_collection_union (*file_collection_classes, **kwargs)

Takes a number of subclasses of FileCollection and produces a new datatype that shares the functionality
of all of them and is constituted of the union of the filenames.

The datatype name of the result will be produced automatically from the inputs, unless the kwargs name is
given to specify a new one.

Note that the input classes’ __init__ " 's will each be called once, with the standard
"“PimlicoDatatype args. If this behaviour does not suit the datatypes you’re using, override the init or
define the union some other way.

filename_with_range (val)

Option processor for file paths with an optional start and end line at the end.

class UnnamedFileCollection (*args, **kwargs)

Bases: pimlico.datatypes.base.IterableCorpus

Note: Datatypes used for reading input data are being phased out and replaced by input reader modules. Use
pimlico.modules.input.text.raw_text_files instead of this for reading raw text files at the start
of your pipeline.

A file collection that’s just a bunch of files with arbitrary names. The names are not necessarily known until the
data is ready. They may be specified as a list in the metadata, or through datatype options, in the case of input
datatypes.

This datatype is particularly useful for loading individual files or sets of files at the start of a pipeline. If you
just want the raw data from each file, you can use this class as it is. It’s an TterableCorpus with a raw data
type. If you want to apply some special processing to each file, do so by overriding this class and specifying the
data_point_type, providing a DataPoint Type subclass that does the necessary processing.

When using it as an input datatype to load arbitrary files, specify a list of absolute paths to the files you want to
use. They must be absolute paths, but remember that you can make use of various special substitutions in the
config file to give paths relative to your project root, or other locations.

The file paths may use globs to match multiple files. By default, it is assumed that every filename should exist
and every glob should match at least one file. If this does not hold, the dataset is assumed to be not ready. You
can override this by placing a ? at the start of a filename/glob, indicating that it will be included if it exists, but
is not depended on for considering the data ready to use.

142

Chapter 1. Contents

https://docs.python.org/2/library/glob.html

Pimlico Documentation, Release 0.8

The same postprocessing will be applied to every file. In cases where you need to apply different processing
to different subsets of the files, define multiple input modules, with different data point types, for example, and
then combine them using pimlico.modules.corpora.concat.

datatype _name = 'unnamed file_collection'
input_module_options = {'exclude': {'type': <function _fn at 0x7£703d7516e0>, 'help'
data_ready ()

Check whether the data corresponding to this datatype instance exists and is ready to be read.

Default implementation just checks whether the data dir exists. Subclasses might want to add their own
checks, or even override this, if the data dir isn’t needed.

get_paths (error_on_missing=False)

get_paths_from options (error_on_missing=False)
Get a list of paths to all the files specified in the files option. If error_on_missing=True, non-
optional paths or globs that do not correspond to an existing file cause an IOError to be raised.

path_name_to_doc_name (path)

class UnnamedFileCollectionWriter (*args, **kwargs)
Bases: pimlico.datatypes.base.PimlicoDatatypeWriter

Use as a context manager to write a bag of files out to the output directory.

Provide each file’s raw data and a filename to use to the function write_file() within the with statement. The
writer will keep track of what files you’ve output and store the list.

get_absolute_path (filename)

add_written_file (filename)
Add a filename to the list of files included in the collection. Should only be called after the file of that
name has been written to the path given by get_absolute_path().

Usually, you should use write_file() instead, which handles this itself.

write_file (filename, data)
Werite data to a file and add the file to the collection.

NamedFile (name)
Datatype factory that produces something like a File datatype, pointing to a single file, but doesn’t store its
path, just refers to a particular file in the data dir.

Parameters name — name of the file
Returns datatype class

class FilesInput (min_files=1)
Bases: pimlico.datatypes.base.DynamicInputDatatypeRequirement

datatype_doc_info = 'A file collection containing at least one file (or a given specif
check_type (supplied_type)

FileInput
alias of pimlico.datatypes.files.FilesInput

class NamedFileWriter (base_dir, filename, **kwargs)
Bases: pimlico.datatypes.base.PimlicoDatatypeWriter

absolute_path

write_data (data)
Write the given string data to the appropriate output file

1.5. API Documentation 143

Pimlico Documentation, Release 0.8

class RawTextFiles (*args, **kwargs)
Bases: pimlico.datatypes.files.UnnamedFileCollection

Essentially the same as RawTextDirectory, but more flexible. Should generally be used in preference to Raw-
TextDirectory.

Basic datatype for reading in all the files in a collection as raw text documents.

Generally, this may be appropriate to use as the input datatype at the start of a pipeline. You’ll then want to pass
it through a tarred corpus filter to get it into a suitable form for input to other modules.

data_point_type
alias of pimlico.datatypes.documents.RawTextDocument Type

class RawTextDirectory (*args, **kwargs)
Bases: pimlico.datatypes.base.IterableCorpus

Basic datatype for reading in all the files in a directory and its subdirectories as raw text documents.

Generally, this may be appropriate to use as the input datatype at the start of a pipeline. You’ll then want to pass
it through a tarred corpus filter to get it into a suitable form for input to other modules.

datatype name = 'raw_text_directory'
input_module_options = {'encoding': {'default': 'utf8', 'help': "Encoding used to s

data_point_type
aliasof pimlico.datatypes.documents.RawTextDocument Type

requires_data_ preparation = True
prepare_data (output_dir, log)
walk ()

filter_ document (doc)
Each document is passed through this filter before being yielded. Default implementation does nothing,
but this makes it easy to implement custom postprocessing by overriding.

get_required_paths ()
Returns a list of paths to files that should be available for the data to be read. The base data_ready()
implementation checks that these are all available and, if the datatype is used as an input to a pipeline
and requires a data preparation routine to be run, data preparation will not be executed until these files are
available.

Paths may be absolute or relative. If relative, they refer to files within the data directory and data_ready()
will fail if the data dir doesn’t exist.

Returns list of absolute or relative paths

pimlico.datatypes.floats module

Similar to :mod:pimlico.datatypes.ints, but for lists of floats.

class FloatListsDocumentType (options, metadata)
Bases: pimlico.datatypes.documents.RawDocumentType

formatters = [('float_lists', 'pimlico.datatypes.floats.FloatListsFormatter')]
process_document (data)

read_rows (reader)

144 Chapter 1. Contents

Pimlico Documentation, Release 0.8

class FloatListsFormatter (corpus)
Bases: pimlico.cli.browser.formatter.DocumentBrowserFormatter

DATATYPE
alias of FloatListsDocument Type

format_document (doc)
Format a single document and return the result as a string (or unicode, but it will be converted to ASCII
for display).

Must be overridden by subclasses.

class FloatListsDocumentCorpus (base_dir, pipeline, **kwargs)
Bases: pimlico.datatypes.tar.TarredCorpus

Corpus of float list data: each doc contains lists of float. Unlike TntegerTableDocumentCorpus, they are
not all constrained to have the same length. The downside is that the storage format (and probably I/O speed)
isn’t quite as efficient. It’s still better than just storing ints as strings or JSON objects.

The floats are stored as C double, which use 8 bytes. At the moment, we don’t provide any way to change this.
An alternative would be to use C floats, losing precision but (almost) halving storage size.

datatype name = 'float_lists_corpus'

data_point_type
alias of FloatListsDocument Type

class FloatListsDocumentCorpusWriter (base_dir, **kwargs)
Bases: pimlico.datatypes.tar.TarredCorpusiWriter

document_to_raw_ data (data)

class FloatListDocumentType (options, metadata)
Bases: pimlico.datatypes.documents.RawDocumentType

Like FloatListsDocumentType, but each document is treated as a single list of floats.
process_document (data)
read_floats (reader)

class FloatListDocumentCorpus (base_dir, pipeline, **kwargs)
Bases: pimlico.datatypes.tar.TarredCorpus

Corpus of float data: each doc contains a single sequence of floats.
The floats are stored as C doubles, using 8§ bytes each.
datatype name = 'float_list_corpus'

data_point_type
alias of FloatListDocument Type

class FloatListDocumentCorpusWriter (base_dir, **kwargs)
Bases: pimlico.datatypes.tar.TarredCorpusWriter

document_to_raw_data (data)

pimlico.datatypes.ints module

class IntegerListsDocumentType (options, metadata)
Bases: pimlico.datatypes.documents.RawDocument Type

unpacker

1.5. API Documentation 145

Pimlico Documentation, Release 0.8

process_document (data)
read_rows (reader)

class IntegerListsDocumentCorpus (base_dir, pipeline, **kwargs)
Bases: pimlico.datatypes.tar.TarredCorpus

Corpus of integer list data: each doc contains lists of ints. Unlike TntegerTableDocumentCorpus, they
are not all constrained to have the same length. The downside is that the storage format (and probably I/O speed)
isn’t quite as good. It’s still better than just storing ints as strings or JSON objects.

By default, the ints are stored as C longs, which use 4 bytes. If you know you don’t need ints this big, you can
choose 1 or 2 bytes, or even 8 (long long). By default, the ints are unsigned, but they may be signed.

datatype_name = 'integer_ lists_corpus'

data_point_type
alias of TntegerListsDocumentType

class IntegerListsDocumentCorpusWriter (base_dir, signed=False, bytes=8, **kwargs)
Bases: pimlico.datatypes.tar.TarredCorpusWriter

document_to_raw_data (data)

class IntegerListDocumentType (options, metadata)
Bases: pimlico.datatypes.documents.RawDocumentType

Like IntegerListsDocumentType, but each document is treated as a single list of integers.
unpacker

int_size

process_document (data)

read_ints (reader)

class IntegerListDocumentCorpus (base_dir, pipeline, **kwargs)
Bases: pimlico.datatypes.tar.TarredCorpus

Corpus of integer data: each doc contains a single sequence of ints.

By default, the ints are stored as C longs, which use 4 bytes. If you know you don’t need ints this big, you can
choose 1 or 2 bytes, or even 8 (long long). By default, the ints are unsigned, but they may be signed.

datatype name = 'integer_ list_corpus'

data_point_type
alias of TntegerlListDocument Type

class IntegerListDocumentCorpusWriter (base_dir, signed=False, bytes=8, **kwargs)
Bases: pimlico.datatypes.tar.TarredCorpusiWriter

document_to_raw_data (data)

pimlico.datatypes.jsondoc module

class JsonDocumentCorpus (base_dir, pipeline, **kwargs)
Bases: pimlico.datatypes.tar.TarredCorpus

Very simple document corpus in which each document is a JSON object.

datatype _name = 'json'

146 Chapter 1. Contents

Pimlico Documentation, Release 0.8

data_point_type
alias of JsonDocument Type

class JsonDocumentCorpusWriter (base_dir, readable=False, **kwargs)
Bases: pimlico.datatypes.tar.TarredCorpusWriter

If readable=True, JSON text output will be nicely formatted so that it’s human-readable. Otherwise, it will be
formatted to take up less space.

document_to_raw_data (data)

pimlico.datatypes.keras module

Datatypes for storing and loading Keras models.

class KerasModelWriter (base_dir, **kwargs)
Bases: pimlico.datatypes.base.PimlicoDatatypeWriter

Writer for storing both types of Keras model (since they provide the same storage interface).
write_model (model)

write_architecture (model)

write_weights (model)

class KerasModel (base_dir, pipeline, module=None, additional_name=None,

use_main_metadata=False, **kwargs)
Bases: pimlico.datatypes.base.PimlicoDatatype

Datatype for both types of Keras models, stored using Keras’ own storage mechanisms. This uses Keras’ method
of storing the model architecture as JSON and stores the weights using hdf5.

datatype name = 'keras_model'
custom_obijects = {}

get_software_dependencies ()
Check that all software required to read this datatype is installed and locatable. This is separate to metadata
config checks, so that you don’t need to satisfy the dependencies for all modules in order to be able to run
one of them. You might, for example, want to run different modules on different machines. This is called
when a module is about to be executed and each of the dependencies is checked.

Returns a list of instances of subclasses of :class:~pimlico.core.dependencies.base.SoftwareDependency,
representing the libraries that this module depends on.

Take care when providing dependency classes that you don’t put any import statements at the top of the
Python module that will make loading the dependency type itself dependent on runtime dependencies.
You’ll want to run import checks by putting import statements within this method.

You should call the super method for checking superclass dependencies.
get_custom_objects ()
load_model ()

class KerasModelBuilderClassWriter (base_dir, build_params, builder_class_path, **kwargs)
Bases: pimlico.datatypes.base.PimlicoDatatypeWriter

Writer for storing Keras models in the manner described in :cls:KerasModelBuilderClass.

write_weights (model)

1.5. API Documentation 147

Pimlico Documentation, Release 0.8

class KerasModelBuilderClass (base_dir, pipeline, **kwargs)
Bases: pimlico.datatypes.base.PimlicoDatatype

An alternative way to store Keras models.

Create a class whose init method build the model architecture. It should take a kwarg called build_params, which
is a JSON-encodable dictionary of parameters that determine how the model gets build (hyperparameters). When
you initialize your model for training, create this hyperparameter dictionary and use it to instantiate the model
class.

Use the KerasModelBuilderClassWriter to store the model during training. Create a writer, then start model
training, storing the weights to the filename given by the weights_filename attribute of the writer. The hyperpa-
rameter dictionary will also be stored.

The writer also stores the fully-qualified path of the model-builder class. When we read the datatype and want
to rebuild the model, we import the class, instantiate it and then set its weights to those we’ve stored.

The model builder class must have the model stored in an attribute model.
weights_filename

load_build_params ()

create_builder_class (override_params=None)

load_model (override_params=None)
Instantiate the model builder class with the stored parameters and set the weights on the model to those
stored.

Returns model builder instance (keras model in attribute model

pimlico.datatypes.plotting module

class PlotOutput (base_dir, pipeline, module=None, additional_name=None,

use_main_metadata=False, **kwargs)
Bases: pimlico.datatypes.base.PimlicoDatatype

Output from matplotlib plotting.

Contains the dataset being plotted, a script to build the plot, and the output PDF.

Also supplies additional datatypes to point to the individual files.

supplied_additional = [('pdf', <class 'pimlico.datatypes.files.NamedFile'>), ('code',
script_path

plot ()
Runs the plotting script. Errors are not caught, so if there’s a problem in the script they’ll be raised.

pdf_path
data_path

class PlotOutputWriter (base_dir)
Bases: pimlico.datatypes.base.PimlicoDatatypeWriter

pimlico.datatypes.r module

class RTabSeparatedValuesFile (base_dir, pipeline, module=None, additional_name=None,

use_main_metadata=False, **kwargs)
Bases: pimlico.datatypes.files.File

148 Chapter 1. Contents

Pimlico Documentation, Release 0.8

Tabular data stored in a TSV file, suitable for reading in using R’s read.delim function.
datatype _name = 'r_tsv'
absolute_path

get_detailed_status ()
Returns a list of strings, containing detailed information about the data. Only called if data_ready() ==
True.

Subclasses may override this to supply useful (human-readable) information specific to the datatype. They
should called the super method.

class RTabSeparatedValuesFileWriter (base_dir, headings=None, **kwargs)
Bases: pimlico.datatypes.base.PimlicoDatatypeWriter

Writer for TSV files suitable for reading with R.

If headings is specified, this is written as the first line of the file, so headings=TRUE should be used when
reading into R.

(132

Double quotes (“) in the fields will be replaced by double-double quotes (‘*”’), which R interprets as a double
quote. Fields containing tabs will be surrounded by normal double quotes. When you read the data into R, the
default value of quotes (‘) should therefore be fine. No escaping is performed on single quotes (‘).

absolute_path

write_row (row)
If elements are not of string type, they will be coerced to a string for writing. If you want to format them
differently, do it before calling this method and pass in strings.

pimlico.datatypes.results module

class NumericResult (base_dir, pipeline, **kwargs)
Bases: pimlico.datatypes.base.PimlicoDatatype

Simple datatype to contain a numeric value and a label, representing the result of some process, such as evalua-
tion of a model on a task.

For example, allows results to be plotted by passing them into a graph plotting module.
datatype name = 'numeric result'

data
Raw JSON data

result
The numeric result being stored

label
A label to identify this result (e.g. model name)

class NumericResultWriter (base_dir, **kwargs)
Bases: pimlico.datatypes.base.PimlicoDatatypeWriter

pimlico.datatypes.sklearn module

Datatypes for storing and loading Scikit-learn models.

class SklearnModelWriter (base_dir, **kwargs)
Bases: pimlico.datatypes.base.PimlicoDatatypeWriter

1.5. API Documentation 149

Pimlico Documentation, Release 0.8

write_model (model)

class SklearnModel (base_dir, pipeline, **kwargs)
Bases: pimlico.datatypes.base.PimlicoDatatype

Datatype for storing Scikit-learn models.

Very simple storage mechanism: we just pickle the model to a file. Instead of the standard Python pickle

package, we use Joblib, which stores large data objects (especially Numpy arrays) more efficiently.

get_software_dependencies ()

Check that all software required to read this datatype is installed and locatable. This is separate to metadata
config checks, so that you don’t need to satisfy the dependencies for all modules in order to be able to run
one of them. You might, for example, want to run different modules on different machines. This is called
when a module is about to be executed and each of the dependencies is checked.

Returns a list of instances of subclasses of :class:~pimlico.core.dependencies.base.SoftwareDependency,
representing the libraries that this module depends on.

Take care when providing dependency classes that you don’t put any import statements at the top of the
Python module that will make loading the dependency type itself dependent on runtime dependencies.

You’ll want to run import checks by putting import statements within this method.
You should call the super method for checking superclass dependencies.

load_model ()

pimlico.datatypes.spans module

class SentenceSpansDocumentType (options, metadata)
Bases: pimlico.datatypes. jsondoc.JsonDocumentType

process_document (doc)

class SentenceSpansCorpus (base_dir, pipeline, **kwargs)
Bases: pimlico.datatypes. jsondoc.JsonDocumentCorpus

data_point_type
alias of SentenceSpansDocument Type

class SentenceSpansCorpusWriter (base_dir, readable=False, **kwargs)
Bases: pimlico.datatypes. jsondoc.JsonDocumentCorpuslWriter

document_to_raw data (data)

pimlico.datatypes.table module

get_struct (bytes, signed, row_length)

class IntegerTableDocumentType (options, metadata)
Bases: pimlico.datatypes.documents.RawDocument Type

unpacker
row_size
process_document (data)

read_rows (reader)

150 Chapter 1. Contents

https://pythonhosted.org/joblib/

Pimlico Documentation, Release 0.8

class IntegerTableDocumentCorpus (base_dir, pipeline, **kwargs)
Bases: pimlico.datatypes.tar.TarredCorpus

Corpus of tabular integer data: each doc contains rows of ints, where each row contains the same number
of values. This allows a more compact representation, which doesn’t require converting the ints to strings or
scanning for line ends, so is quite a bit quicker and results in much smaller file sizes. The downside is that the
files are not human-readable.

By default, the ints are stored as C longs, which use 4 bytes. If you know you don’t need ints this big, you can
choose 1 or 2 bytes, or even 8 (long long). By default, the ints are unsigned, but they may be signed.

datatype_name = 'integer_ table_corpus'

data_point_type
alias of TntegerTableDocument Type

class IntegerTableDocumentCorpusWriter (base_dir, row_length, signed=False, bytes=8,

**kwargs)
Bases: pimlico.datatypes.tar.TarredCorpusWriter

document_to_raw_data (data)

pimlico.datatypes.tar module

class TarredCorpus (base_dir, pipeline, **kwargs)
Bases: pimlico.datatypes.base.IterableCorpus

datatype _name = 'tar'
document_preprocessors = []

data_point_type
aliasof pimlico.datatypes.documents.RawDocument Type

extract_file (archive_name, filename)
Extract an individual file by archive name and filename. This is not an efficient way of extracting a lot of
files. The typical use case of a tarred corpus is to iterate over its files, which is much faster.

doc_iter (subsample=None, start_after=None, skip=None)
archive_iter (subsample=None, start_after=None, skip=None)

process_document (data)
Process the data read in for a single document. Allows easy implementation of datatypes using Tarred-
Corpus to do all the archive handling, etc, just specifying a particular way of handling the data within
documents.

By default, uses the document data processing provided by the document type.

Most of the time, you shouldn’t need to override this, but just write a document type that does the necessary
processing.

I think we should remove this once the new (forthcoming) datatype system is ready, but we’ll need to
check that there’s not still a use case for it.

list_archive_iter ()

data_ready ()
Check whether the data corresponding to this datatype instance exists and is ready to be read.

Default implementation just checks whether the data dir exists. Subclasses might want to add their own
checks, or even override this, if the data dir isn’t needed.

1.5. API Documentation 151

Pimlico Documentation, Release 0.8

class TarredCorpusWriter (base_dir, gzip=False, append=False, trust_length=False, encoding="utf-
8, **kwargs)
Bases: pimlico.datatypes.base.IterableCorpusiWriter

If gzip=True, each document is gzipped before adding it to the archive. Not the same as creating a tarball, since
the docs are gzipped before adding them, not the whole archive together, but it means we can easily iterate over
the documents, unzipping them as required.

A subtlety of TarredCorpusWriter and its subclasses is that, as soon as the writer has been initialized, it must be
legitimate to initialize a datatype to read the corpus. Naturally, at this point there will be no documents in the
corpus, but it allows us to do document processing on the fly by initializing writers and readers to be sure the
pre/post-processing is identical to if we were writing the docs to disk and reading them in again.

If append=True, existing archives and their files are not overwritten, the new files are just added to the end. This
is useful where we want to restart processing that was broken off in the middle. If trust_length=True, when
appending the initial length of the corpus is read from the metadata already written. Otherwise (default), the
number of docs already written is actually counted during initialization. This is sensible when the previous
writing process may have ended abruptly, so that the metadata is not reliable. If you know you can trust the
metadata, however, setting trust_length=True will speed things up.

add_document (archive_name, doc_name, data)

document_to_raw data (doc)
Overridden by subclasses to provide the mapping from the structured data supplied to the writer to the
actual raw string to be written to disk. Override this instead of add_document(), so that filters can do the
mapping on the fly without writing the output to disk.

class AlignedTarredCorpora (corpora)
Bases: object

Iterator for iterating over multiple corpora simultaneously that contain the same files, grouped into archives in
the same way. This is the standard utility for taking multiple inputs to a Pimlico module that contain different
data but for the same corpus (e.g. output of different tools).

archive_iter (subsample=None, start_after=None)

exception CorpusAlignmentError
Bases: exceptions.Exception

exception TarredCorpusIterationError
Bases: exceptions.Exception

pimlico.datatypes.tokenized module

class TokenizedDocumentType (options, metadata)
Bases: pimlico.datatypes.documents.TextDocumentType

formatters = [('tokenized_doc', 'pimlico.datatypes.formatters.tokenized.TokenizedDocum
process_document (doc, as_type=None)

class TokenizedCorpus (base_dir, pipeline, **kwargs)
Bases: pimlico.datatypes.tar.TarredCorpus

Specialized datatype for a tarred corpus that’s had tokenization applied. The datatype does very little - the main
reason for its existence is to allow modules to require that a corpus has been tokenized before it’s given as input.

Each document is a list of sentences. Each sentence is a list of words.

datatype _name = 'tokenized'

152 Chapter 1. Contents

Pimlico Documentation, Release 0.8

data_point_type
alias of TokenizedDocument Type

class TokenizedCorpusWriter (base_dir, gzip=False, append=False, trust_length=False,
encoding="utf-8’, **kwargs)
Bases: pimlico.datatypes.tar.TarredCorpusiWriter

Simple writer that takes lists of tokens and outputs them with a sentence per line and tokens separated by spaces.

document_ to_raw_ data (doc)
Overridden by subclasses to provide the mapping from the structured data supplied to the writer to the
actual raw string to be written to disk. Override this instead of add_document(), so that filters can do the
mapping on the fly without writing the output to disk.

class CharacterTokenizedDocumentType (options, metadata)
Bases: pimlico.datatypes.tokenized.TokenizedDocumentType

Simple character-level tokenized corpus. The text isn’t stored in any special way, but is represented when read
internally just as a sequence of characters in each sentence.

If you need a more sophisticated way to handle character-type (or any non-word) units within each sequence,
see SegmentedLinesDocumentType.

formatters = [('char_tokenized doc', 'pimlico.datatypes.formatters.tokenized.Character
process_document (doc, as_type=None)

class CharacterTokenizedCorpusWriter (base_dir, gzip=False, append=False,

trust_length=False, encoding="utf-8’, **kwargs)
Bases: pimlico.datatypes.tar.TarredCorpusWriter

Simple writer that takes lists of char-tokens and outputs them with a sentence per line. Just joins together all the
characters to store the sentence, since they can be divided up again when read.

document_to_raw data (doc)
Overridden by subclasses to provide the mapping from the structured data supplied to the writer to the
actual raw string to be written to disk. Override this instead of add_document(), so that filters can do the
mapping on the fly without writing the output to disk.

class SegmentedLinesDocumentType (options, metadata)
Bases: pimlico.datatypes.tokenized.TokenizedDocumentType

Document consisting of lines, each split into elements, which may be characters, words, or whatever. Rather
like a tokenized corpus, but doesn’t make the assumption that the elements (words in the case of a tokenized
corpus) don’t include spaces.

You might use this, for example, if you want to train character-level models on a text corpus, but don’t use
strictly single-character units, perhaps grouping together certain short character sequences.

Uses the character / to separate elements. If a / is found in an element, it is stored as @slash@, so this string is
assumed not to be used in any element (which seems reasonable enough, generally).

formatters = [('segmented lines', 'pimlico.datatypes.formatters.tokenized.SegmentedLin
process_document (doc, as_type=None)

class SegmentedLinesCorpusWriter (base_dir, gzip=False, append=False, trust_length=False,
encoding="utf-8’, **kwargs)
Bases: pimlico.datatypes.tar.TarredCorpusWriter
document_to_raw_data (doc)
Overridden by subclasses to provide the mapping from the structured data supplied to the writer to the

1.5. API Documentation 153

Pimlico Documentation, Release 0.8

actual raw string to be written to disk. Override this instead of add_document(), so that filters can do the
mapping on the fly without writing the output to disk.

pimlico.datatypes.vrt module

class VRTWord (word, *attributes)
Bases: object

Word with all its annotations.
The Korp docs give the following example list of positional attributes (columns):

word form, the number of the token within the sentence, lemma, lemma with compound boundaries
marked, part of speech, morphological analysis, dependency head number and dependency relation

However, they are not fixed and different files may have different numbers of attributes with different meanings.
This information is not included in the data file.

class VRTText (words, paragraph_ranges=[], sentence_ranges=[], opening_tag=None)
Bases: object

Contains a single VRT text (i.e. document).

Note that VRT’s structures are not hierarchical: they can be overlapping. See VRT docs.
We don’t currently process structural attributes. This can easily be added later if necessary.
static from_string (data)

paragraphs

sentences

word_strings

class VRTDocumentType (options, metadata)
Bases: pimlico.datatypes.documents.DataPointType

Document type for annotation text documents read in from VRT files (VeRticalized Text, as used by Korp:).
formatters = [('vrt', 'pimlico.datatypes.vrt.VRTFormatter')]
process_document (doc)

class VRTFormatter (corpus)
Bases: pimlico.cli.browser.formatter.DocumentBrowserFormatter

DATATYPE
alias of VRTDocument Type

format_ document (doc)
Format a single document and return the result as a string (or unicode, but it will be converted to ASCII
for display).

Must be overridden by subclasses.

pimlico.datatypes.word2vec module

class Word2VecModel (base_dir, pipeline, **kwargs)
Bases: pimlico.datatypes.base.PimlicoDatatype

Datatype for storing Gensim-trained word2vec embeddings.

154 Chapter 1. Contents

https://www.kielipankki.fi/development/korp/corpus-input-format/#VRT_file_format
https://www.kielipankki.fi/development/korp/corpus-input-format/#VRT_file_format

Pimlico Documentation, Release 0.8

See also:

Datatype pimlico.datatypes.embeddings.Embeddings Another, more generic way, to write the
same data, which should generally be used in preference to this one. Embeddings does not depend on
Gensim, but can be converted to Gensim’s data structure easily.

shell_ _commands = [<pimlico.datatypes.word2vec.NearestNeighboursCommand object>, <pimli

data_ready ()
Check whether the data corresponding to this datatype instance exists and is ready to be read.

Default implementation just checks whether the data dir exists. Subclasses might want to add their own
checks, or even override this, if the data dir isn’t needed.

load_model ()
model

get_software_dependencies ()
Check that all software required to read this datatype is installed and locatable. This is separate to metadata
config checks, so that you don’t need to satisfy the dependencies for all modules in order to be able to run
one of them. You might, for example, want to run different modules on different machines. This is called
when a module is about to be executed and each of the dependencies is checked.

Returns a list of instances of subclasses of :class:~pimlico.core.dependencies.base.SoftwareDependency,
representing the libraries that this module depends on.

Take care when providing dependency classes that you don’t put any import statements at the top of the
Python module that will make loading the dependency type itself dependent on runtime dependencies.
You’ll want to run import checks by putting import statements within this method.

You should call the super method for checking superclass dependencies.

class Word2VecModelWriter (base_dir, verb_only=False, **kwargs)
Bases: pimlico.datatypes.base.PimlicoDatatypelWriter

Note: Generally, it’s preferable to use pimlico.datatypes.embeddings.Embeddings, which is
more generic, so easier to connect up with general vector/embedding-handling modules.

write_word2vec_model (model)

write_keyed_vectors (vectors)

pimlico.datatypes.word_annotations module

class WordAnnotationsDocumentType (options, metadata)
Bases: pimlico.datatypes.documents.RawDocumentType

sentence_boundary_re
word boundary

word_re

process_document (raw_data)

class WordAnnotationCorpus (base_dir, pipeline, **kwargs)
Bases: pimlico.datatypes.tar.TarredCorpus

datatype_name = 'word_annotations'

1.5. API Documentation 155

Pimlico Documentation, Release 0.8

data_point_type
alias of WordAnnotationsDocument Type

annotation_fields = None

read_annotation_ fields ()
Get the available annotation fields from the dataset’s configuration. These are the actual fields that will be
available in the dictionary produced corresponding to each word.

data_ready ()
Check whether the data corresponding to this datatype instance exists and is ready to be read.

Default implementation just checks whether the data dir exists. Subclasses might want to add their own
checks, or even override this, if the data dir isn’t needed.

class WordAnnotationCorpusWriter (sentence_boundary, word_boundary, word_format, non-

word_chars, base_dir, **kwargs)
Bases: pimlico.datatypes.tar.TarredCorpusiWriter

Ensures that the correct metadata is provided for a word annotation corpus. Doesn’t take care of the formatting
of the data: that needs to be done by the writing code, or by a subclass.

class SimpleWordAnnotationCorpusWriter (base_dir, field_names, field _sep=u’l’, **kwargs)
Bases: pimlico.datatypes.word_annotations.WordAnnotationCorpusWriter

Takes care of writing word annotations in a simple format, where each line contains a sentence, words are
separated by spaces and a series of annotation fields for each word are separated by Is (or a given separator).
This corresponds to the standard tag format for C&C.

document_ to_raw data (data)

class AddAnnotationField (input_name, add_fields)
Bases: pimlico.datatypes.base.DynamicOutputDatatype

get_datatype (module_info)

classmethod get_base_datatype_ class()
If it’s possible to say before the instance of a ModuleInfo is available what base datatype will be produced,
implement this to return the class. By default, it returns None.

If this information is available, it will be used in documentation.

class WordAnnotationCorpusWithRequiredFields (required_fields)
Bases: pimlico.datatypes.base.DynamicInputDatatypeRequirement

Dynamic (functional) type that can be used in place of a module’s input type. In typechecking, checks whether
the input module is a WordAnnotationCorpus (or subtype) and whether its fields include all of those required.

check_type (supplied_type)

exception AnnotationParseError
Bases: exceptions.Exception

pimlico.datatypes.xml module

Input datatype for extracting documents from XML files. Gigaword, for example, is stored in this way.
Depends on BeautifulSoup (see “bs4” target in lib dir Makefile).

DEPRECATED: Use input module pimlico.modules. input.xml instead. Input datatypes are being phased
out.

156 Chapter 1. Contents

Pimlico Documentation, Release 0.8

class XmlDocumentIterator (*args, **kwargs)
Bases: pimlico.datatypes.base.IterableCorpus

requires_data_ preparation = True
input_module_options = {'document_name_attr': {'default': 'id', 'help': "Attribute

data_point_type
aliasof pimlico.datatypes.documents.RawTextDocument Type

get_software_dependencies ()
Check that all software required to read this datatype is installed and locatable. This is separate to metadata
config checks, so that you don’t need to satisfy the dependencies for all modules in order to be able to run
one of them. You might, for example, want to run different modules on different machines. This is called
when a module is about to be executed and each of the dependencies is checked.

Returns a list of instances of subclasses of :class:~pimlico.core.dependencies.base.SoftwareDependency,
representing the libraries that this module depends on.

Take care when providing dependency classes that you don’t put any import statements at the top of the
Python module that will make loading the dependency type itself dependent on runtime dependencies.
You’ll want to run import checks by putting import statements within this method.

You should call the super method for checking superclass dependencies.
prepare_data (output_dir, log)

data_ready ()
Check whether the data corresponding to this datatype instance exists and is ready to be read.

Default implementation just checks whether the data dir exists. Subclasses might want to add their own
checks, or even override this, if the data dir isn’t needed.

Module contents

OpenNLPCorefCorpus
alias of pimlico.datatypes.coref.opennlp.CorefCorpus

OpenNLPCorefCorpusWriter
aliasof pimlico.datatypes.coref.opennlp.CorefCorpusiriter

CoreNLPCorefCorpus
alias of pimlico.datatypes.coref.corenlp.CorefCorpus

CoreNLPCorefCorpusWriter
alias of pimlico.datatypes.coref.corenlp.CorefCorpusWriter

class ConstituencyParseTreeCorpus (base_dir, pipeline, **kwargs)
Bases: pimlico.datatypes.tar.TarredCorpus

Note that this is not fully developed yet. At the moment, you’ll just get, for each document, a list of the texts of
each tree. In future, they will be better represented.

datatype name = 'parse trees'

data_point_type
alias of TreeStringsDocument Type

class ConstituencyParseTreeCorpusWriter (base_dir, gzip=False, append=False,
trust_length=False, encoding="utf-8’, **kwargs)
Bases: pimlico.datatypes.tar.TarredCorpusWriter

document_to_raw_data (data)

1.5. API Documentation 157

Pimlico Documentation, Release 0.8

class TreeStringsDocumentType (options, metadata)
Bases: pimlico.datatypes.documents.RawDocumentType

process_document (doc)

class CandcOutputCorpus (base_dir, pipeline, **kwargs)
Bases: pimlico.datatypes.tar.TarredCorpus

datatype_name = 'candc_output'

data_point_type
alias of CandcOutputDocument Type

class CandcOutputCorpusWriter (base_dir, gzip=False, append=False, trust_length=False,
encoding="utf-8’, **kwargs)
Bases: pimlico.datatypes.tar.TarredCorpusWriter

document to_raw data (data)

class StanfordDependencyParseCorpus (base_dir, pipeline, **kwargs)
Bases: pimlico.datatypes. jsondoc.JsonDocumentCorpus

datatype name = 'stanford dependency_parses'

data_point_type
alias of StanfordDependencyParseDocument Type

class StanfordDependencyParseCorpusWriter (base_dir, readable=False, **kwargs)
Bases: pimlico.datatypes. jsondoc.JsonDocumentCorpushWriter

document_ to_raw data (data)

class CoNLLDependencyParseCorpus (base_dir, pipeline, **kwargs)
Bases: pimlico.datatypes.word_annotations.WordAnnotationCorpus

10-field CoNLL dependency parse format (conllx) —i.e. post parsing.

Fields are: id (int), word form, lemma, coarse POS, POS, features, head (int), dep relation, phead (int), pdeprel
The last two are usually not used.

datatype_name = 'conll_dependency_parses'

data_point_type
alias of CoNLLDependencyParseDocumentType

class CoNLLDependencyParseCorpusWriter (base_dir, **kwargs)
Bases: pimlico.datatypes.word _annotations.WordAnnotationCorpusWriter

document_to_raw_data (data)

class CoNLLDependencyParselInputCorpus (base_dir, pipeline, **kwargs)
Bases: pimlico.datatypes.word _annotations.WordAnnotationCorpus

The version of the CoNLL format (conllx) that only has the first 6 columns, i.e. no dependency parse yet
annotated.

datatype_name = 'conll_dependency parse_inputs'

data_point_type
alias of CoNLLDependencyParseInputDocument Type

class CoNLLDependencyParselInputCorpusWriter (base_dir, **kwargs)
Bases: pimlico.datatypes.word _annotations.WordAnnotationCorpusWriter

document_to_raw_data (data)

158 Chapter 1. Contents

Pimlico Documentation, Release 0.8

class NumpyArray (base_dir, pipeline, **kwargs)
Bases: pimlico.datatypes.files.NamedFileCollection

datatype_name = 'numpy_array'
filenames = ['array.npy']
array

get_software_dependencies ()
Check that all software required to read this datatype is installed and locatable. This is separate to metadata
config checks, so that you don’t need to satisfy the dependencies for all modules in order to be able to run
one of them. You might, for example, want to run different modules on different machines. This is called
when a module is about to be executed and each of the dependencies is checked.

Returns a list of instances of subclasses of :class:~pimlico.core.dependencies.base.SoftwareDependency,
representing the libraries that this module depends on.

Take care when providing dependency classes that you don’t put any import statements at the top of the
Python module that will make loading the dependency type itself dependent on runtime dependencies.
You’ll want to run import checks by putting import statements within this method.

You should call the super method for checking superclass dependencies.

class NumpyArrayWriter (base_dir, additional_name=None)
Bases: pimlico.datatypes.base.PimlicoDatatypeWriter

set_array (array)

class ScipySparseMatrix (base_dir, pipeline, **kwargs)
Bases: pimlico.datatypes.base.PimlicoDatatype

Wrapper around Scipy sparse matrices. The matrix loaded is always in COO format — you probably want to
convert to something else before using it. See scipy docs on sparse matrix conversions.

datatype name = 'scipy sparse_array'
filenames = ['array.mtx']
array

get_software_dependencies ()
Check that all software required to read this datatype is installed and locatable. This is separate to metadata
config checks, so that you don’t need to satisfy the dependencies for all modules in order to be able to run
one of them. You might, for example, want to run different modules on different machines. This is called
when a module is about to be executed and each of the dependencies is checked.

Returns a list of instances of subclasses of :class:~pimlico.core.dependencies.base.SoftwareDependency,
representing the libraries that this module depends on.

Take care when providing dependency classes that you don’t put any import statements at the top of the
Python module that will make loading the dependency type itself dependent on runtime dependencies.
You’ll want to run import checks by putting import statements within this method.

You should call the super method for checking superclass dependencies.

class ScipySparseMatrixWriter (base_dir, additional_name=None)
Bases: pimlico.datatypes.base.PimlicoDatatypeWriter

set_matrix (mat)

class PimlicoDatatype (base_dir, pipeline, module=None, additional_name=None,

use_main_metadata=False, **kwargs)
Bases: object

1.5. API Documentation 159

Pimlico Documentation, Release 0.8

The abstract superclass of all datatypes. Provides basic functionality for identifying where data should be stored
and such.

Datatypes are used to specify the routines for reading the output from modules. They’re also used to specify
how to read pipeline inputs. Most datatypes that have data simply read it in when required. Some (in particular
those used as inputs) need a preparation phase to be run, where the raw data itself isn’t sufficient to implement
the reading interfaces required. In this case, they should override prepare_data().

Datatypes may require/allow options to be set when they’re used to read pipeline inputs. These are specified, in
the same way as module options, by input_module_options on the datatype class.

Datatypes may supply a set of additional datatypes. These should be guaranteed to be available if the main
datatype is available. They must require no extra processing to be made available, unless that is done on the fly
while reading the datatype (like a filter) or while the main datatype is being written.

Additional datatypes can be accessed in config files by specifying the main datatype (as a previous module,
optionally with an output name) and the additional datatype name in the form main_datatype->additional_name.
Multiple additional names may be given, causing the next name to be looked up as an additional datatype of the
initially loaded additional datatype. E..g main_datatype->additional0->additionall.

To avoid conflicts in the metadata between datatypes using the same directory, datatypes loaded as additional
datatypes have their additional name available to them and use it as a prefix to the metadata filename.

If use_main_metadata=True on an additional datatype, the same metadata will be read as for the main datatype
to which this is an additional datatype.

module is the ModulelInfo instance for the pipeline module that this datatype was produced by. It may be None,
if the datatype wasn’t instantiated by a module. It is not required to be set if you’re instantiating a datatype in
some context other than module output. It should generally be set for input datatypes, though, since they are
treated as being created by a special input module.

requires_data_preparation = False

input_module_options = {}
Override to provide shell commands specific to this datatype. Should include the superclass’ list.

shell commands = []
List of additional datatypes provided by this one, given as (name, datatype class) pairs. For each of these, a
call to get_additional_datatype(name) (once the main datatype is ready) should return a datatype instance
that is also ready.

supplied_additional = []
Most datatype classes define their own type of corpus, which is often a subtype of some other. Some,
however, emulate another type and it is that type that should be considered the be the type of the dataset,
not the class itself.

For example, TarredCorpusFilter dynamically produces something that looks like a TarredCorpus, and
further down the pipeline, if its type is need, it should be considered to be a TarredCorpus.

Most of the time, this can be left empty, but occasionally it needs to be set.
emulated_datatype = None
datatype name = 'base_ datatype'

metadata
Read in metadata from a file in the corpus directory.

Note that this is no longer cached in memory. We need to be sure that the metadata values returned are
always up to date with what is on disk, so always re-read the file when we need to get a value from the
metadata. Since the file is typically small, this is unlikely to cause a problem. If we decide to return to

160

Chapter 1. Contents

Pimlico Documentation, Release 0.8

cacheing the metadata dictionary in future, we will need to make sure that we can never run into problems
with out-of-date metadata being returned.

get_required_paths ()
Returns a list of paths to files that should be available for the data to be read. The base data_ready()
implementation checks that these are all available and, if the datatype is used as an input to a pipeline
and requires a data preparation routine to be run, data preparation will not be executed until these files are
available.

Paths may be absolute or relative. If relative, they refer to files within the data directory and data_ready()
will fail if the data dir doesn’t exist.

Returns list of absolute or relative paths

get_software_dependencies ()
Check that all software required to read this datatype is installed and locatable. This is separate to metadata
config checks, so that you don’t need to satisfy the dependencies for all modules in order to be able to run
one of them. You might, for example, want to run different modules on different machines. This is called
when a module is about to be executed and each of the dependencies is checked.

Returns a list of instances of subclasses of :class:~pimlico.core.dependencies.base.SoftwareDependency,
representing the libraries that this module depends on.

Take care when providing dependency classes that you don’t put any import statements at the top of the
Python module that will make loading the dependency type itself dependent on runtime dependencies.
You’ll want to run import checks by putting import statements within this method.

You should call the super method for checking superclass dependencies.
prepare_data (output_dir, log)
classmethod create_from_options (base_dir, pipeline, options={}, module=None)

data_ready ()
Check whether the data corresponding to this datatype instance exists and is ready to be read.

Default implementation just checks whether the data dir exists. Subclasses might want to add their own
checks, or even override this, if the data dir isn’t needed.

get_detailed_status()
Returns a list of strings, containing detailed information about the data. Only called if data_ready() ==
True.

Subclasses may override this to supply useful (human-readable) information specific to the datatype. They
should called the super method.

classmethod datatype_ full_ class_name ()
The fully qualified name of the class for this datatype, by which it is reference in config files. Gener-
ally, datatypes don’t need to override this, but type requirements that take the place of datatypes for type
checking need to provide it.

instantiate_additional_datatype (name, additional_name)
Default implementation just assumes the datatype class can be instantiated using the default constructor,
with the same base dir and pipeline as the main datatype. Options given to the main datatype are passed
down to the additional datatype.

classmethod check_type (supplied_type)
Method used by datatype type-checking algorithm to determine whether a supplied datatype (given as a
class, which is a subclass of PimlicoDatatype) is compatible with the present datatype, which is being
treated as a type requirement.

. APl Documentation 161

Pimlico Documentation, Release 0.8

Typically, the present class is a type requirement on a module input and supplied_type is the type provided
by a previous module’s output.

The default implementation simply checks whether supplied_type is a subclass of the present class. Sub-
classes may wish to impose different or additional checks.

Parameters supplied_type — type provided where the present class is required, or datatype
instance

Returns True if the check is successful, False otherwise

classmethod type_checking name ()
Supplies a name for this datatype to be used in type-checking error messages. Default implementation just
provides the class name. Classes that override check_supplied_type() may want to override this too.

classmethod full_datatype_name ()
Returns a string/unicode name for the datatype that includes relevant sub-type information. The default
implementation just uses the attribute datatype_name, but subclasses may have more detailed information
to add. For example, iterable corpus types also supply information about the data-point type.

class PimlicoDatatypeWriter (base_dir, additional_name=None)

Bases: object
Abstract base class fo data writer associated with Pimlico datatypes.

require_tasks (*tasks)
Add a name or multiple names to the list of output tasks that must be completed before writing is finished

task_complete (task)
incomplete_tasks
write_metadata ()

subordinate_additional_ name (name)

class IterableCorpus (*args, **kwargs)

Bases: pimlico.datatypes.base.PimlicoDatatype

Superclass of all datatypes which represent a dataset that can be iterated over document by document (or data-
point by datapoint - what exactly we’re iterating over may vary, though documents are most common).

The actual type of the data depends on the subclass: it could be, e.g. coref output, etc. Information about the
type of individual documents is provided by document_type and this is used in type checking.

At creation time, length should be provided in the metadata, denoting how many documents are in the dataset.
datatype_name = 'iterable_corpus'

data_point_type
alias of pimlico.datatypes.documents.RawDocument Type

shell_commands = [<pimlico.datatypes.base.CountInvalidCmd object>]

get_detailed_status()
Returns a list of strings, containing detailed information about the data. Only called if data_ready() ==
True.

Subclasses may override this to supply useful (human-readable) information specific to the datatype. They
should called the super method.

classmethod check_type (supplied_type)
Override type checking to require that the supplied type have a document type that is compatible with (i.e.
a subclass of) the document type of this class.

162

Chapter 1. Contents

Pimlico Documentation, Release 0.8

classmethod type_checking name ()
Supplies a name for this datatype to be used in type-checking error messages. Default implementation just
provides the class name. Classes that override check_supplied_type() may want to override this too.

classmethod full_datatype_name ()
Returns a string/unicode name for the datatype that includes relevant sub-type information. The default
implementation just uses the attribute datatype_name, but subclasses may have more detailed information
to add. For example, iterable corpus types also supply information about the data-point type.

process_document_data_with_datatype (data)
Applies the corpus’ datatype’s process_document() method to the raw data :param data: :return:

class IterableCorpusWriter (base_dir, additional_name=None)
Bases: pimlico.datatypes.base.PimlicoDatatypeWriter

class DynamicOutputDatatype
Bases: object

Types of module outputs may be specified as a subclass of PimlicoDatatype, or alternatively as an instance
of DynamicOutputType. In this case, get_datatype() is called when the output datatype is needed, passing in
the module info instance for the module, so that a specialized datatype can be produced on the basis of options,
input types, etc.

The dynamic type must provide certain pieces of information needed for typechecking.
datatype _name = None
get_datatype (module_info)

get_base_datatype_class ()
If it’s possible to say before the instance of a ModuleInfo is available what base datatype will be produced,
implement this to return the class. By default, it returns None.

If this information is available, it will be used in documentation.

class DynamicInputDatatypeRequirement
Bases: object

Types of module inputs may be given as a subclass of PimlicoDatatype, a tuple of datatypes, or an in-
stance a DynamicInputDatatypeRequirement subclass. In this case, check_type(supplied_type) is called during
typechecking to check whether the type that we’ve got conforms to the input type requirements.

Additionally, if datatype_doc_info is provided, it is used to represent the input type constraints in documentation.

datatype_doc_info = None
check_type (supplied_type)

type_checking name ()
Supplies a name for this datatype to be used in type-checking error messages. Default implementation just
provides the class name. Subclasses may want to override this too.

class InvalidDocument (module_name, error_info=None)
Bases: object

Widely used in Pimlico to represent an empty document that is empty not because the original input document
was empty, but because a module along the way had an error processing it. Document readers/writers should
generally be robust to this and simply pass through the whole thing where possible, so that it’s always possible
to work out, where one of these pops up, where the error occurred.

static load (fext)

1.5. API Documentation 163

Pimlico Documentation, Release 0.8

static invalid document_or_ text (rexr)
If the text represents an invalid document, parse it and return an InvalidDocument object. Otherwise, return
the text as is.

exception DatatypeloadError

Bases: exceptions.Exception

exception DatatypeWriteError

Bases: exceptions.Exception

load_datatype (path)

Try loading a datatype class for a given path. Raises a DatatypeLoadError if it’s not a valid datatype path.

class MultipleInputs (datatype_requirements)

Bases: object

An input datatype that can be used as an item in a module’s inputs, which lets the module accept an unbounded
number of inputs, all satisfying the same datatype requirements. When writing the inputs in a config file, they
can be specified as a comma-separated list of the usual type of specification (module name, with optional output
name). Each item in the list must point to a datatype that satisfies the type-checking.

The list may also include (or entirely consist of) a base module name from the pipeline that has been expanded
into multiple modules according to alternative parameters (the type separated by vertical bars, see Multiple
parameter values). Use the notation *name, where name is the base module name, to denote all of the expanded
module names as inputs. These are treated as if you’d written out all of the expanded module names separated
by commas.

In a config file, if you need the same input specification to be repeated multiple times in a list, instead of writing
it out explicitly you can use a multiplier to repeat it N times by putting «N after it. This is particularly useful
when N is the result of expanding module variables, allowing the number of times an input is repeated to depend
on some modvar expression.

When get_input() is called on the module, instead of returning a single datatype, a list of datatypes is returned.

class CaevoCorpus (base_dir, pipeline, **kwargs)

Bases: pimlico.datatypes.tar.TarredCorpus

Datatype for Caevo output. The output is stored exactly as it comes out from Caevo, in an XML format. This
datatype reads in that XML and provides easy access to its components.

Since we simply store the XML that comes from Caevo, there’s no corresponding corpus writer. The data is
output using a :class:pimlico.datatypes.tar. TarredCorpus Writer.

data_point_type
alias of CaevoDocument Type

class Dictionary (base_dir, pipeline, **kwargs)

Bases: pimlico.datatypes.base.PimlicoDatatype

Dictionary encapsulates the mapping between normalized words and their integer ids.
datatype_name = 'dictionary'

get_data()

data_ready ()
Check whether the data corresponding to this datatype instance exists and is ready to be read.

Default implementation just checks whether the data dir exists. Subclasses might want to add their own
checks, or even override this, if the data dir isn’t needed.

164

Chapter 1. Contents

Pimlico Documentation, Release 0.8

get_detailed_status ()
Returns a list of strings, containing detailed information about the data. Only called if data_ready() ==

True.

Subclasses may override this to supply useful (human-readable) information specific to the datatype. They
should called the super method.

class DictionaryWriter (base_dir)
Bases: pimlico.datatypes.base.PimlicoDatatypeWriter

add_documents (documents, prune_at=2000000)
filter (threshold=None, no_above=None, limit=None)

class KeyValuelistCorpus (base_dir, pipeline, **kwargs)
Bases: pimlico.datatypes.tar.TarredCorpus

datatype_name = 'key_value_lists'

data_point_type
alias of KeyValuelistDocument Type

s

class KeyValuelistCorpusWriter (base_dir, separator="", fv_separator="=", **kwargs)

Bases: pimlico.datatypes.tar.TarredCorpusiWriter
document_to_raw data (data)

class KeyValuelistDocumentType (options, metadata)
Bases: pimlico.datatypes.documents.RawDocumentType

process_document (doc)

class TermFeaturelistCorpus (base_dir, pipeline, **kwargs)
Bases: pimlico.datatypes. features.KeyValueListCorpus

Special case of KeyValueListCorpus, where one special feature “term” is always present and the other feature
types are counts of the occurrence of a particular feature with this term in each data point.

datatype _name = 'term_feature_lists'

data_point_type
alias of TermFeaturelListDocument Type

class TermFeaturelistCorpusWriter (base_dir, **kwargs)
Bases: pimlico.datatypes. features.KeyValueListCorpushWriter

document_to_raw_ data (data)

class TermFeaturelistDocumentType (options, metadata)
Bases: pimlico.datatypes. features.KeyValueListDocumentType

process_document (doc)

class IndexedTermFeatureListCorpus (*args, **kwargs)
Bases: pimlico.datatypes.base.IterableCorpus

Term-feature instances, indexed by a dictionary, so that all that’s stored is the indices of the terms and features
and the feature counts for each instance. This is iterable, but, unlike TermFeatureListCorpus, doesn’t iterate
over documents. Now that we’ve filtered extracted features down to a smaller vocab, we put everything in one
big file, with one data point per line.

Since we’re now storing indices, we can use a compact format that’s fast to read from disk, making iterating
over the dataset faster than if we had to read strings, look them up in the vocab, etc.

1.5. API Documentation 165

Pimlico Documentation, Release 0.8

By default, the ints are stored as C longs, which use 4 bytes. If you know you don’t need ints this big, you can
choose 1 or 2 bytes, or even 8 (long long). By default, the ints are unsigned, but they may be signed.

data_point_type
alias of TndexedTermFeaturelListDataPointType

term_dictionary
feature_dictionary
class IndexedTermFeatureListCorpusWriter (base_dir, term_dictionary, feature_dictionary,
bytes=4, signed=False, index_input=False,
*tkwargs)
Bases: pimlico.datatypes.base.IterableCorpusWriter

index_input=True means that the input terms and feature names are already mapped to dictionary indices, so are
assumed to be ints. Otherwise, inputs will be looked up in the appropriate dictionary to get an index.

write_dictionaries ()
add_data_points (iterable)

class IndexedTermFeaturelListDataPointType (options, metadata)
Bases: pimlico.datatypes.documents.DataPointType

class FeatureListScoreCorpus (base_dir, pipeline, **kwargs)
Bases: pimlico.datatypes.tar.TarredCorpus

datatype name = 'scored weight_feature_ lists'

data_point_type
alias of FeaturelListScoreDocument Type

>

class FeatureListScoreCorpusWriter (base_dir, features, separator=":", index_input=False,

**kwargs)
Bases: pimlico.datatypes.tar.TarredCorpusWriter

Input should be a list of data points. Each is a (score, feature list) pair, where score is a Decimal, or other
numeric type. Feature list is a list of (feature name, weight) pairs, or just feature names. If weights are not
given, they will default to 1 when read in (but no weight is stored).

If index_input=True, it is assumed that feature IDs will be given instead of feature names. Otherwise, the feature
names will be looked up in the feature list. Any features not found in the feature type list will simply be skipped.

document_to_raw_data (data)

class FeatureListScoreDocumentType (options, metadata)
Bases: pimlico.datatypes.documents.RawDocumentType

Document type that stores a list of features, each associated with a floating-point score. The feature lists are
simply lists of indices to a feature set for the whole corpus that includes all feature types and which is stored
along with the dataset. These may be binary features (present or absent for each data point), or may have a
weight associated with them. If they are binary, the returned data will have a weight of 1 associated with each.

A corpus of this type can be used to train, for example, a regression.

If scores and weights are passed in as Decimal objects, they will be stored as strings. If they are floats, they will
be converted to Decimals via their string representation (avoiding some of the oddness of converting between
binary and decimal representations). To avoid loss of precision, pass in all scores and weights as Decimal
objects.

formatters = [('features', 'pimlico.datatypes.formatters.features.FeatureListScoreForm

process_document (doc)

166 Chapter 1. Contents

Pimlico Documentation, Release 0.8

class JsonDocumentCorpus (base_dir, pipeline, **kwargs)
Bases: pimlico.datatypes.tar.TarredCorpus

Very simple document corpus in which each document is a JSON object.
datatype _name = 'json'

data_point_type
alias of JsonDocument Type

class JsonDocumentCorpusWriter (base_dir, readable=False, **kwargs)
Bases: pimlico.datatypes.tar.TarredCorpusiWriter

If readable=True, JSON text output will be nicely formatted so that it’s human-readable. Otherwise, it will be
formatted to take up less space.

document_to_raw_data (data)

class TarredCorpus (base_dir, pipeline, **kwargs)
Bases: pimlico.datatypes.base.IterableCorpus

datatype_name = 'tar'
document_preprocessors = []

data_point_type
alias of pimlico.datatypes.documents.RawDocument Type

extract_file (archive_name, filename)
Extract an individual file by archive name and filename. This is not an efficient way of extracting a lot of
files. The typical use case of a tarred corpus is to iterate over its files, which is much faster.

doc_iter (subsample=None, start_after=None, skip=None)
archive_iter (subsample=None, start_after=None, skip=None)

process_document (data)
Process the data read in for a single document. Allows easy implementation of datatypes using Tarred-
Corpus to do all the archive handling, etc, just specifying a particular way of handling the data within
documents.

By default, uses the document data processing provided by the document type.

Most of the time, you shouldn’t need to override this, but just write a document type that does the necessary
processing.

I think we should remove this once the new (forthcoming) datatype system is ready, but we’ll need to
check that there’s not still a use case for it.

list_archive_iter ()

data_ready ()
Check whether the data corresponding to this datatype instance exists and is ready to be read.

Default implementation just checks whether the data dir exists. Subclasses might want to add their own
checks, or even override this, if the data dir isn’t needed.

class TarredCorpusWriter (base_dir, gzip=False, append=False, trust_length=False, encoding="utf-
8, **kwargs)
Bases: pimlico.datatypes.base.IterableCorpusWriter
If gzip=True, each document is gzipped before adding it to the archive. Not the same as creating a tarball, since
the docs are gzipped before adding them, not the whole archive together, but it means we can easily iterate over
the documents, unzipping them as required.

1.5. API Documentation 167

Pimlico Documentation, Release 0.8

A subtlety of TarredCorpusWriter and its subclasses is that, as soon as the writer has been initialized, it must be
legitimate to initialize a datatype to read the corpus. Naturally, at this point there will be no documents in the
corpus, but it allows us to do document processing on the fly by initializing writers and readers to be sure the
pre/post-processing is identical to if we were writing the docs to disk and reading them in again.

If append=True, existing archives and their files are not overwritten, the new files are just added to the end. This
is useful where we want to restart processing that was broken off in the middle. If trust_length=True, when
appending the initial length of the corpus is read from the metadata already written. Otherwise (default), the
number of docs already written is actually counted during initialization. This is sensible when the previous
writing process may have ended abruptly, so that the metadata is not reliable. If you know you can trust the
metadata, however, setting trust_length=True will speed things up.

add_document (archive_name, doc_name, data)

document_to_raw_data (doc)
Overridden by subclasses to provide the mapping from the structured data supplied to the writer to the
actual raw string to be written to disk. Override this instead of add_document(), so that filters can do the
mapping on the fly without writing the output to disk.

class AlignedTarredCorpora (corpora)
Bases: object

Iterator for iterating over multiple corpora simultaneously that contain the same files, grouped into archives in
the same way. This is the standard utility for taking multiple inputs to a Pimlico module that contain different
data but for the same corpus (e.g. output of different tools).

archive_iter (subsample=None, start_after=None)

exception CorpusAlignmentError
Bases: exceptions.Exception

exception TarredCorpusIterationError
Bases: exceptions.Exception

class TokenizedDocumentType (options, metadata)
Bases: pimlico.datatypes.documents.TextDocumentType

formatters = [('tokenized_doc', 'pimlico.datatypes.formatters.tokenized.TokenizedDocum
process_document (doc, as_type=None)

class TokenizedCorpus (base_dir, pipeline, **kwargs)
Bases: pimlico.datatypes.tar.TarredCorpus

Specialized datatype for a tarred corpus that’s had tokenization applied. The datatype does very little - the main
reason for its existence is to allow modules to require that a corpus has been tokenized before it’s given as input.

Each document is a list of sentences. Each sentence is a list of words.
datatype_name = 'tokenized'

data_point_type
alias of TokenizedDocument Type

class TokenizedCorpusWriter (base_dir, gzip=False, append=False, trust_length=False,
encoding="utf-8’, **kwargs)
Bases: pimlico.datatypes.tar.TarredCorpusWriter

Simple writer that takes lists of tokens and outputs them with a sentence per line and tokens separated by spaces.

document to_ raw data (doc)
Overridden by subclasses to provide the mapping from the structured data supplied to the writer to the

168 Chapter 1. Contents

Pimlico Documentation, Release 0.8

actual raw string to be written to disk. Override this instead of add_document(), so that filters can do the
mapping on the fly without writing the output to disk.

class SegmentedLinesDocumentType (options, metadata)
Bases: pimlico.datatypes.tokenized.TokenizedDocumentType

Document consisting of lines, each split into elements, which may be characters, words, or whatever. Rather
like a tokenized corpus, but doesn’t make the assumption that the elements (words in the case of a tokenized
corpus) don’t include spaces.

You might use this, for example, if you want to train character-level models on a text corpus, but don’t use
strictly single-character units, perhaps grouping together certain short character sequences.

Uses the character / to separate elements. If a/ is found in an element, it is stored as @slash@, so this string is
assumed not to be used in any element (which seems reasonable enough, generally).

formatters = [('segmented lines', 'pimlico.datatypes.formatters.tokenized.SegmentedLin
process_document (doc, as_type=None)

class SegmentedLinesCorpusWriter (base_dir, gzip=False, append=False, trust_length=False,
encoding="utf-8’, **kwargs)
Bases: pimlico.datatypes.tar.TarredCorpusWriter
document_to_raw_data (doc)
Overridden by subclasses to provide the mapping from the structured data supplied to the writer to the
actual raw string to be written to disk. Override this instead of add_document(), so that filters can do the
mapping on the fly without writing the output to disk.

class CharacterTokenizedDocumentType (options, metadata)
Bases: pimlico.datatypes.tokenized.TokenizedDocumentType

Simple character-level tokenized corpus. The text isn’t stored in any special way, but is represented when read
internally just as a sequence of characters in each sentence.

If you need a more sophisticated way to handle character-type (or any non-word) units within each sequence,
see SegmentedLinesDocumentType.

formatters = [('char_tokenized doc', 'pimlico.datatypes.formatters.tokenized.Character!
process_document (doc, as_type=None)

class CharacterTokenizedCorpusWriter (base_dir, gzip=False, append=False,
trust_length=False, encoding="utf-8’, **kwargs)
Bases: pimlico.datatypes.tar.TarredCorpusWriter

Simple writer that takes lists of char-tokens and outputs them with a sentence per line. Just joins together all the
characters to store the sentence, since they can be divided up again when read.

document_to_raw_data (doc)
Overridden by subclasses to provide the mapping from the structured data supplied to the writer to the
actual raw string to be written to disk. Override this instead of add_document(), so that filters can do the
mapping on the fly without writing the output to disk.

class WordAnnotationCorpus (base_dir, pipeline, **kwargs)
Bases: pimlico.datatypes.tar.TarredCorpus

datatype name = 'word annotations'’

data_ point_type
alias of WordAnnotationsDocument Type

annotation fields = None

1.5. API Documentation 169

Pimlico Documentation, Release 0.8

read_annotation_fields ()
Get the available annotation fields from the dataset’s configuration. These are the actual fields that will be
available in the dictionary produced corresponding to each word.

data_ready ()
Check whether the data corresponding to this datatype instance exists and is ready to be read.

Default implementation just checks whether the data dir exists. Subclasses might want to add their own
checks, or even override this, if the data dir isn’t needed.

class WordAnnotationCorpusWriter (sentence_boundary, word_boundary, word_format, non-
word_chars, base_dir, **kwargs)
Bases: pimlico.datatypes.tar.TarredCorpusWriter

Ensures that the correct metadata is provided for a word annotation corpus. Doesn’t take care of the formatting
of the data: that needs to be done by the writing code, or by a subclass.

class SimpleWordAnnotationCorpusWriter (base_dir, field_names, field_sep=u’l’, **kwargs)
Bases: pimlico.datatypes.word _annotations.WordAnnotationCorpusWriter

Takes care of writing word annotations in a simple format, where each line contains a sentence, words are
separated by spaces and a series of annotation fields for each word are separated by Is (or a given separator).
This corresponds to the standard tag format for C&C.

document_to_raw_data (data)

class AddAnnotationField (input_name, add_fields)
Bases: pimlico.datatypes.base.DynamicOutputDatatype

get_datatype (module_info)

classmethod get_base_datatype_ class ()
If it’s possible to say before the instance of a Modulelnfo is available what base datatype will be produced,
implement this to return the class. By default, it returns None.

If this information is available, it will be used in documentation.

class WordAnnotationCorpusWithRequiredFields (required_fields)
Bases: pimlico.datatypes.base.DynamicInputDatatypeRequirement

Dynamic (functional) type that can be used in place of a module’s input type. In typechecking, checks whether
the input module is a WordAnnotationCorpus (or subtype) and whether its fields include all of those required.

check_type (supplied_type)

exception AnnotationParseError
Bases: exceptions.Exception

class WordAnnotationsDocumentType (options, metadata)
Bases: pimlico.datatypes.documents.RawDocumentType

sentence_boundary_re
word_boundary

word_re

process_document (raw_data)

class XmlDocumentIterator (*args, **kwargs)
Bases: pimlico.datatypes.base.IterableCorpus

requires_data preparation = True

input_module_options = {'document_name_attr': {'default': 'id', 'help':

170 Chapter 1. Contents

"Attribute -

Pimlico Documentation, Release 0.8

data_point_type
aliasof pimlico.datatypes.documents.RawTextDocument Type

get_software_dependencies ()
Check that all software required to read this datatype is installed and locatable. This is separate to metadata
config checks, so that you don’t need to satisfy the dependencies for all modules in order to be able to run
one of them. You might, for example, want to run different modules on different machines. This is called
when a module is about to be executed and each of the dependencies is checked.

Returns a list of instances of subclasses of :class:~pimlico.core.dependencies.base.SoftwareDependency,
representing the libraries that this module depends on.

Take care when providing dependency classes that you don’t put any import statements at the top of the
Python module that will make loading the dependency type itself dependent on runtime dependencies.
You’ll want to run import checks by putting import statements within this method.

You should call the super method for checking superclass dependencies.
prepare_data (output_dir, log)

data_ready ()
Check whether the data corresponding to this datatype instance exists and is ready to be read.

Default implementation just checks whether the data dir exists. Subclasses might want to add their own
checks, or even override this, if the data dir isn’t needed.

class DataPointType (options, metadata)
Bases: object

Base data-point type for iterable corpora. All iterable corpora should have data-point types that are subclasses

of this.
input_module_options = {}
formatters = []

List of (name, cls_path) pairs specifying a standard set of formatters that the user might want to choose
from to view a dataset of this type. The user is not restricted to this set, but can easily choose these by
name, instead of specifying a class path themselves. The first in the list is the default used if no formatter
is specified. Falls back to DefaultFormatter if empty

class RawDocumentType (options, metadata)
Bases: pimlico.datatypes.documents.DataPointType

Base document type. All document types for tarred corpora should be subclasses of this.

It may be used itself as well, where documents are just treated as raw data, though most of the time it will be
appropriate to use subclasses to provide more information and processing operations specific to the datatype.

The process_document () method produces a data structure in the internal format appropriate for the data
point type.

A problem

If a subclassed type produces an internal data structure that does not work as a sub-type (using duck-typing-
style inheritance principles) of its parent type, we can run into problems. See [this comment](https://github.
com/markgw/pimlico/issues/1#issuecomment-383620759) for discussion of a solution to be introduced.

I therefore am not going to solve this now: you just need to work around it.
process_document (doc)

class RawTextDocumentType (options, metadata)
Bases: pimlico.datatypes.documents.TextDocumentType

1.5. API Documentation 171

https://github.com/markgw/pimlico/issues/1#issuecomment-383620759
https://github.com/markgw/pimlico/issues/1#issuecomment-383620759

Pimlico Documentation, Release 0.8

Subclass of TextDocumentType used to indicate that the text hasn’t been processed (tokenized, etc). Note that
text that has been tokenized, parsed, etc does not used subclasses of this type, so they will not be considered
compatible if this type is used as a requirement.

pimlico.test package
Submodules
pimlico.test.pipeline module

Pipeline tests

Pimlico modules and datatypes cannot always be easily tested with unit tests and where they can it’s often not easy to
work out how to write the tests in a neatly packaged way. Instead, modules can package up tests in the form of a small
pipeline that comes with a tiny dataset to use as input. The pipeline can be run in a test environment, where software
dependencies are installed and local config is prepared to store output and so on.

This way of providing tests also has the advantage that modules at the same time provide a demo (or several) of how
to use them — how pipeline config should look and what sort of input data to use.

class TestPipeline (pipeline, run_modules, log)
Bases: object

static load_pipeline (path, storage_root)
Load a test pipeline from a config file.

Path may be absolute, or given relative to Pimlico test data directory (PIMLICO_ROOT/test/data)
get_uninstalled dependencies ()
test_all modules()
test_input_module (module_name)
test_module_execution (module_name)

run_test_pipeline (path, module_names, log, no_clean=False)
Run a test pipeline, loading the pipeline config from a given path (which may be relative to the Pimlico test data
directory) and running each of the named modules, including any of those modules’ dependencies.

Any software dependencies not already available that can be installed automatically will be installed in the
current environment. If there are unsatisfied dependencies that can’t be automatically installed, an error will be
raised.

If any of the modules name explicitly is an input dataset, it is loaded and data_ready() is checked. If it is an
IterableCorpus, it is tested simply by iterating over the full corpus.

run_test_suite (pipelines_and_modules, log, no_clean=False)

Parameters pipeline_and_modules - list of (pipeline, modules) pairs, where pipeline is a
path to a config file and modules a list of module names to test

clear_storage_dir ()

exception TestPipelineRunError
Bases: exceptions.Exception

172 Chapter 1. Contents

Pimlico Documentation, Release 0.8

Module contents

pimlico.utils package

Subpackages

pimlico.utils.docs package

Submodules
pimlico.utils.docs.commandgen module
pimlico.utils.docs.modulegen module
pimlico.utils.docs.rest module

make_table (grid, header=None)
table_div (col_widths, header_flag=False)

normalize_cell (string, length)

Module contents

trim_docstring (docstring)

Submodules
pimlico.utils.communicate module

timeout_process (*args, **kwds)

Context manager for use in a with statement. If the with block hasn’t completed after the given number of

seconds, the process is killed.

Parameters proc — process to kill if timeout is reached before end of block

Returns

terminate_process (proc, kill_time=None)

Ends a process started with subprocess. Tries killing, then falls back on terminating if it doesn’t work.

Parameters

* kill_ time - time to allow the process to be killed before falling back on terminating

* proc — Popen instance

Returns

class StreamCommunicationPacket (data)

Bases: object
length

encode ()

1.5. API Documentation

173

Pimlico Documentation, Release 0.8

static read (stream)

exception StreamCommunicationError
Bases: exceptions.Exception

pimlico.utils.core module

multiwith (*args, **kwds)
Taken from contextlib’s nested(). We need the variable number of context managers that this function allows.

is_identifier (ident)
Determines if string is valid Python identifier.

remove_duplicates (Ist, key=<function <lambda>>)
Remove duplicate values from a list, keeping just the first one, using a particular key function to compare them.

infinite_cycle (iterable)
Iterate infinitely over the given iterable.

Watch out for calling this on a generator or iter: they can only be iterated over once, so you’ll get stuck in an
infinite loop with no more items yielded once you’ve gone over it once.

You may also specify a callable, in which case it will be called each time to get a new iterable/iterator. This is
useful in the case of generator functions.

Parameters iterable - iterable or generator to loop over indefinitely

import_member (path)
Import a class, function, or other module member by its fully-qualified Python name.

Parameters path — path to member, including full package path and class/function/etc name
Returns cls

split_seq (seq, separator, ignore_empty_final=False)
Iterate over a sequence and group its values into lists, separated in the original sequence by the given value. If
on is callable, it is called on each element to test whether it is a separator. Otherwise, elements that are equal to
on a treated as separators.

Parameters
* seq - sequence to divide up
* separator — separator or separator test function

* ignore_empty_ final - by default, if there’s a separator at the end, the last sequence
yielded is empty. If ignore_empty_final=True, in this case the last empty sequence is
dropped

Returns iterator over subsequences

split_seq after (seq, separator)
Somewhat like split_seq, but starts a new subsequence after each separator, without removing the separators.
Each subsequence therefore ends with a separator, except the last one if there’s no separator at the end.

Parameters
* seq - sequence to divide up
* separator — separator or separator test function

Returns iterator over subsequences

174 Chapter 1. Contents

Pimlico Documentation, Release 0.8

chunk_1list (Ist, length)
Divides a list into chunks of max length length.

class cached_property (func)
Bases: object

A property that is only computed once per instance and then replaces itself with an ordinary attribute. Deleting
the attribute resets the property.

Often useful in Pimlico datatypes, where it can be time-consuming to load data, but we can’t do it once when
the datatype is first loaded, since the data might not be ready at that point. Instead, we can access the data, or
particular parts of it, using properties and easily cache the result.

Taken from: https://github.com/bottlepy/bottle

pimlico.utils.email module

Email sending utilities

Configure email sending functionality by adding the following fields to your Pimlico local config file:
email_sender From-address for all sent emails

email_recipients To-addresses, separated by commas. All notification emails will be sent to all recipients
email_host (optional) Hostname of your SMTP server. Defaults to localhost

email_username (optional) Username to authenticate with your SMTP server. If not given, it is assumed that no
authentication is required

email_password (optional) Password to authenticate with your SMTP server. Must be supplied if username is given

class EmailConfig (sender=None, recipients=None, host=None, username=None, password=None)
Bases: object

classmethod from local_config (local_config)

send_pimlico_email (subject, content, local_config, log)
Primary method for sending emails from Pimlico. Tries to send an email with the given content, using the email
details found in the local config. If something goes wrong, an error is logged on the given log.

Parameters
* subject - email subject
* content - email text (may be unicode)
* local_config - local config dictionary
* log - logger to log errors to (and info if the sending works)
send_text_email (email_config, subject, content=None)

exception EmailError
Bases: exceptions.Exception

pimlico.utils.filesystem module

dirsize (path)
Recursively compute the size of the contents of a directory.

Parameters path —

1.5. API Documentation 175

https://github.com/bottlepy/bottle

Pimlico Documentation, Release 0.8

Returns size in bytes
format_file_size (bytes)

copy_dir_ with_progress (source_dir, target_dir)
Utility for copying a large directory and displaying a progress bar showing how much is copied.

Parameters
* source_dir —
* target_dir -
Returns

new_filename (directory, initial_filename="tmp_file’)
Generate a filename that doesn’t already exist.

retry_open (filename, errnos=[13], retry_schedule=[2, 10, 30, 120, 300], **kwargs)
Try opening a file, using the builtin open() function. If an IOError is raised and its errno is in the given list, wait
a moment then retry. Keeps doing this, waiting a bit longer each time, hoping that the problem will go away.

Once too many attempts have been made, outputs a message and waits for user input. This means the user can
fix the problem (e.g. renew credentials) and pick up where execution left off. If they choose not to, the original
error will be raised

Default list of errnos is just [/3] — permission denied.

Use retry_schedule to customize the lengths of time waited between retries. Default: 2s, 10s, 30s, 2m, Sm, then
give up.

Additional kwargs are pass on to open().

extract_from_archive (archive_filename, members, target_dir, preserve_dirs=True)
Extract a file or files from an archive, which may be a tarball or a zip file (determined by the file extension).

extract_archive (archive_filename, target_dir, preserve_dirs=True)
Extract all files from an archive, which may be a tarball or a zip file (determined by the file extension).

pimlico.utils.format module

multiline_tablate (table, widths, **kwargs)

title_ box (title_text)
Make a nice big pretty title surrounded by a box.

pimlico.utils.linguistic module

strip_punctuation (s, split_words=True)

pimlico.utils.logging module

get_console_logger (name, debug=~False)
Convenience function to make it easier to create new loggers.

Parameters
* name - logging system logger name

* debug — whether to use DEBUG level. By default, uses INFO

176 Chapter 1. Contents

Pimlico Documentation, Release 0.8

Returns

pimlico.utils.network module

get_unused_local_port ()

Find a local port that’s not currently being used, which we’ll be able to bind a service to once this function
returns.

get_unused_local_ports (n)
Find a number of local ports not currently in use. Binds each port found before looking for the next one. If you
just called get_unused_local_port() multiple times, you’d get to same answer coming back.

pimlico.utils.pipes module

qget (queue, *args, **kwargs)
Wrapper that calls the get() method of a queue, catching EINTR interrupts and retrying. Recent versions of
Python have this built in, but with earlier versions you can end up having processes die while waiting on queue
output because an EINTR has received (which isn’t necessarily a problem).

Parameters

* queue —

* args — args to pass to queue’s get()

* kwargs — kwargs to pass to queue’s get()
Returns

class OutputQueue (out)
Bases: object

Direct a readable output (e.g. pipe from a subprocess) to a queue. Returns the queue. Output is added to the
queue one line at a time. To perform a non-blocking read call get_nowait() or get(timeout=T)

get_nowait ()
get (timeout=None)

get_available()
Don’t block. Just return everything that’s available in the queue.

pimlico.utils.pos module

pos_tag_to_ptb (fag)
see :doc:pos_pos_tags_to_ptb

pos_tags_to_ptb (rags)
Takes a list of POS tags and checks they’re all in the PTB tagset. If they’re not, tries mapping them according
to CCGBank’s special version of the tagset. If that doesn’t work, raises a NonPTBTagError.

exception NonPTBTagError
Bases: exceptions.Exception

1.5. API Documentation 177

Pimlico Documentation, Release 0.8

pimlico.utils.probability module

limited_shuffle (iterable, buffer_size, rand_generator=None)
Some algorithms require the order of data to be randomized. An obvious solution is to put it all in a list and
shuffle, but if you don’t want to load it all into memory that’s not an option. This method iterates over the data,
keeping a buffer and choosing at random from the buffer what to put next. It’s less shuffled than the simpler
solution, but limits the amount of memory used at any one time to the buffer size.

limited_ shuffle_ numpy (iterable, buffer_size, randint_buffer_size=1000)
Identical behaviourto 1 imited shuffle (),butuses Numpy’s random sampling routines to generate a large
number of random integers at once. This can make execution a bit bursty, but overall tends to speed things up,
as we get the random sampling over in one big call to Numpy.

batched_randint (low, high=None, batch_size=1000)
Infinite iterable that produces random numbers in the given range by calling Numpy now and then to generate
lots of random numbers at once and then yielding them one by one. Faster than sampling one at a time.

Parameters
* a —lowest number in range
* b — highest number in range
* batch_size — number of ints to generate in one go

sequential_document_sample (corpus, start=None, shuffle=None, sample_rate=None)
Wrapper around a pimlico.datatypes.tar.TarredCorpus to draw infinite samples of documents
from the corpus, by iterating over the corpus (looping infinitely), yielding documents at random. If sample_rate
is given, it should be a float between 0 and 1, specifying the rough proportion of documents to sample. A lower
value spreads out the documents more on average.

Optionally, the samples are shuffled within a limited scope. Set shuffle to the size of this scope (higher will
shuffle more, but need to buffer more samples in memory). Otherwise (shuffle=0), they will appear in the order
they were in the original corpus.

If start is given, that number of documents will be skipped before drawing any samples. Set start=0 to start at
the beginning of the corpus. By default (start=None) a random point in the corpus will be skipped to before
beginning.

sequential_sample (iterable, start=0, shuffle=None, sample_rate=None)
Draw infinite samples from an iterable, by iterating over it (looping infinitely), yielding items at random. If
sample_rate is given, it should be a float between 0 and 1, specifying the rough proportion of documents to
sample. A lower value spreads out the documents more on average.

Optionally, the samples are shuffled within a limited scope. Set shuffle to the size of this scope (higher will
shuffle more, but need to buffer more samples in memory). Otherwise (shuffle=0), they will appear in the order
they were in the original corpus.

If start is given, that number of documents will be skipped before drawing any samples. Set start=0 to start at
the beginning of the corpus. Note that setting this to a high number can result in a slow start-up, if iterating over
the items is slow.

Note: If youre sampling documents from a TarredCorpus, it’s better to use
sequential_ document_sample (), since it makes use of TarredCorpus’s built-in features to do
the skipping and sampling more efficiently.

subsample (iterable, sample_rate)
Subsample the given iterable at a given rate, between 0 and 1.

178 Chapter 1. Contents

Pimlico Documentation, Release 0.8

pimlico.utils.progress module

get_progress_bar (maxval, counter=False, title=None, start=True)
Simple utility to build a standard progress bar, so I don’t have to think about this each time I need one. Starts
the progress bar immediately.

start is no longer used, included only for backwards compatibility.

class SafeProgressBar (maxval=None, widgets=None, term_width=None, poll=1, left_justify=True,

fd=<open file '<stderr>’, mode 'w’>)
Bases: progressbar.ProgressBar

Override basic progress bar to wrap update() method with a couple of extra features.

1. You don’t need to call start() — it will be called when the first update is received. This is good for processes
that have a bit of a start-up lag, or where starting to iterate might generate some other output.

2. An error is not raised if you update with a value higher than maxval. It’s the most annoying thing ever if
you run a long process and the whole thing fails near the end because you slightly miscalculated maxval.

update (value=None)
Updates the ProgressBar to a new value.

increment ()

class DummyFileDescriptor
Bases: object

Passed in to ProgressBar instead of a file descriptor (e.g. stderr) to ensure that nothing gets output.
read (size=None)

readLine (size=None)

write (s)

close ()

class NonOutputtingProgressBar (*args, **kwargs)
Bases: pimlico.utils.progress.SafeProgressBar

Behaves like ProgressBar, but doesn’t output anything.

class LittleOutputtingProgressBar (*args, **kwargs)
Bases: pimlico.utils.progress.SafeProgressBar

Behaves like ProgressBar, but doesn’t output much. Instead of constantly redrawing the progress bar line, it
outputs a simple progress message every time it hits the next 10% mark.

If running on a terminal, this will update the line, as with a normal progress bar. If piping to a file, this will just
print a new line occasionally, so won’t fill up your file with thousands of progress updates.

start ()
Starts measuring time, and prints the bar at 0%.

It returns self so you can use it like this: >>> pbar = ProgressBar().start() >>> for i in range(100): ... #
do something ... pbar.update(i+1) ... >>> pbar.finish()

finish ()
Puts the ProgressBar bar in the finished state.

slice_progress (iterable, num_items, title=None)

class ProgressBarIter (iterable, title=None)
Bases: object

1.5. API Documentation 179

Pimlico Documentation, Release 0.8

pimlico.utils.strings module

truncate (s, length, ellipsis=u’...")

similarities (targets, reference)
Compute string similarity of each of a list of targets to a given reference string. Uses difflib.SequenceMatcher
to compute similarity.

Parameters

* reference — compare all strings to this one

* targets — list of targets to measure similarity of
Returns list of similarity values

sorted_by_similarity (targets, reference)
Return target list sorted by similarity to the reference string. See :func:similarities for similarity measurement.

pimlico.utils.system module

Lowish-level system operations

set_proc_title (title)
Tries to set the current process title. This is very system-dependent and may not always work.

If it’s available, we use the sefproctitle package, which is the most reliable way to do this. If not, we try doing
it by loading libc and calling prctl ourselves. This is not reliable and only works on Unix systems. If neither of
these works, we give up and return False.

If you want to increase the chances of this working (e.g. your process titles don’t seem to be getting set by
Pimlico and you’d like them to), try installing setproctitle, either system-wide or in Pimlico’s virtualenv.

@return: True if the process succeeds, False if there’s an error

pimlico.utils.timeout module

timeout (func, args=(), kwargs={}, timeout_duration=1, default=None)

pimlico.utils.web module

download_file (url, target_file)

Module contents

Submodules

pimlico.cfg module

Global config
Various global variables. Access as follows:
from pimlico import cfg

Set global config parameter cfg.parameter = “Value” # Use parameter print cfg.parameter

180 Chapter 1. Contents

Pimlico Documentation, Release 0.8

There are some global variables in pimlico (in the __init__.py) that probably should be moved here, but I'm leaving
them for now. At the moment, none of those are ever written from outside that file (i.e. think of them as constants,
rather than config), so the only reason to move them is to keep everything in one place.

Module contents

The Pimlico Processing Toolkit (PIpelined Modular LInguistic COrpus processing) is a toolkit for building pipelines
made up of linguistic processing tasks to run on large datasets (corpora). It provides a wrappers around many existing,
widely used NLP (Natural Language Processing) tools.

install_core_dependencies ()

1.6 Future plans

Various things I plan to add to Pimlico in the futures. For a summary, see Pimlico Wishlist.

1.6.1 Pimlico Wishlist

Things I plan to add to Pimlico.
* Further modules:
— CherryPicker for coreference resolution
— Berkeley Parser for fast constituency parsing

— Reconcile coref. Seems to incorporate upstream NLP tasks. Would want to interface such that we can
reuse output from other modules and just do coref.

* Pipeline graph visualizations: Outputting pipeline diagrams. Maybe an interactive GUI to help with viewing
large pipelines

* See issue list on Github for other specific plans

* Big redesign of datatype implementation is documented as a Github project

Todos

The following to-dos appear elsewhere in the docs. They are generally bits of the documentation I’ve not written yet,
but am aware are needed.

Todo: Describe how module dependencies are defined for different types of deps

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/pimlico/checkouts/v0.8/docs/core/dependencies.rst,
line 73.)

Todo: Include some examples from the core modules of how deps are defined and some special cases of software
fetching

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/pimlico/checkouts/v0.8/docs/core/dependencies.rst,
line 80.)

1.6. Future plans 181

https://www.cs.utah.edu/nlp/reconcile/
https://github.com/markgw/pimlico/issues
https://github.com/markgw/pimlico/projects/1

Pimlico Documentation, Release 0.8

Todo: Write documentation for this

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/pimlico/checkouts/v0.8/docs/core/module_structure.
line 9.)

Todo: Document variants

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/pimlico/checkouts/v0.8/docs/core/variants.rst,
line 5.)

Todo: Write a guide to building document map modules.

For now, the skeletons below are a useful starting point, but there should be a more fulsome explanation here of what
document map modules are all about and how to use them.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/pimlico/checkouts/v0.8/docs/guides/map_module.rst
line 5.)

Todo: Use a dataset that everyone can get to in the example

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/pimlico/checkouts/v0.8/docs/guides/setup.rst,
line 84.)

Todo: Add more output convertors: currently only provides tokenization

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/pimlico/checkouts/v0.8/docs/modules/pimlico.modu
line 26.)

Todo: Document this module

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/pimlico/checkouts/v0.8/docs/modules/pimlico.modu
line 12.)

Todo: Document this module

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/pimlico/checkouts/v0.8/docs/modules/pimlico.modu
line 12.)

Todo: Document this module

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/pimlico/checkouts/v0.8/docs/modules/pimlico.modu
line 12.)

Todo: Document this module

182 Chapter 1. Contents

Pimlico Documentation, Release 0.8

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/pimlico/checkouts/v0.8/docs/modules/pimlico.modu
line 12.)

Todo: Document this module

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/pimlico/checkouts/v0.8/docs/modules/pimlico.modu
line 12.)

Todo: Document this module

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/pimlico/checkouts/v0.8/docs/modules/pimlico.modu
line 12.)

Todo: Replace check_runtime_dependencies() with get_software_dependencies()

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/pimlico/checkouts/v0.8/docs/modules/pimlico.modu
line 17.)

Todo: Document this module

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/pimlico/checkouts/v0.8/docs/modules/pimlico.modu
line 12.)

Todo: Replace check_runtime_dependencies() with get_software_dependencies()

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/pimlico/checkouts/v0.8/docs/modules/pimlico.modu
line 17.)

Todo: Document this module

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/pimlico/checkouts/v0.8/docs/modules/pimlico.modu
line 12.)

Todo: Document this module

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/pimlico/checkouts/v0.8/docs/modules/pimlico.modu
line 12.)

1.6.2 Berkeley Parser

https://github.com/slavpetrov/berkeleyparser
Java constituency parser. Pre-trained models are also provided in the Github repo.

Probably no need for a Java wrapper here. The parser itself accepts input on stdin and outputs to stdout, so just use a
subprocess with pipes.

1.6. Future plans 183

https://github.com/slavpetrov/berkeleyparser

Pimlico Documentation, Release 0.8

1.6.3 Cherry Picker

Coreference resolver
http://www.hlt.utdallas.edu/~altaf/cherrypicker/

Requires NER, POS tagging and constituency parsing to be done first. Tools for all of these are included in the Cherry
Picker codebase, but we just need a wrapper around the Cherry Picker tool itself to be able to feed these annotations
in from other modules and perform coref.

Write a Java wrapper and interface with it using Py4J, as with OpenNLP.

1.6.4 Outputting pipeline diagrams

Once pipeline config files get big, it can be difficult to follow what’s going on in them, especially if the structure is
more complex than just a linear pipeline. A useful feature would be the ability to display/output a visualization of the
pipeline as a flow graph.

It looks like the easiest way to do this will be to construct a DOT graph using Graphviz/Pydot and then output the
diagram using Graphviz.

http://www.graphviz.org
https://pypi.python.org/pypi/pydot
Building the graph should be pretty straightforward, since the mapping from modules to nodes is fairly direct.
We could also add extra information to the nodes, like current execution status.
e genindex

e search

184 Chapter 1. Contents

http://www.hlt.utdallas.edu/~altaf/cherrypicker/
http://www.graphviz.org
https://pypi.python.org/pypi/pydot

Python Module Index

pimlico.
pimlico.
pimlico.
pimlico.
pimlico.
pimlico.
pimlico.
pimlico.
pimlico.
pimlico.
pimlico.
pimlico.
pimlico.
pimlico.
pimlico.
pimlico.
pimlico.
pimlico.
pimlico.
pimlico.
pimlico.
pimlico.
pimlico.
pimlico.
pimlico.
pimlico.
pimlico.
pimlico.
pimlico.
pimlico.
pimlico.
pimlico.
pimlico.
pimlico.
pimlico.
pimlico.
pimlico.
pimlico.

cfq, 180

cli,

cli
cli
cli

cli
cli
cli

cli
cli
cli
cli
cli

cli.
cli.
cli.
cli.
.status, 91
cli.
.testemail, 92
.util, 92

cli

cli
cli

93

.browser, 85
.browser.formatter, 82
.browser.tool, 84

cli.
.clean, 87
.debug, 85
.debug.stepper, 85
cli.
cli.
.main, 89
.newmodule, 90
.pyshell, 90
.reset, 91
.run, 91

check, 87

loaddump, 88
locations, 89

shell, 87

shell .base, 85
shell.commands, 86
shell.runner, 87

subcommands, 92

core, 124

core.config, 121
core.dependencies, 98
core.dependencies.base, 93
core.dependencies.core, 95
core.dependencies. java, 95
core.dependencies.python, 97
core.dependencies.versions, 98
core.external, 100
core.external. java, 98
core.logs, 124
core.modules, 120
core.modules.base, 106
core.modules.execute, 114

pimlico.
pimlico.
pimlico.
pimlico.
pimlico.
pimlico.
pimlico.
pimlico.
pimlico.
pimlico
pimlico.
pimlico.

d

pimlico.datatypes,
datatypes.
datatypes
datatypes
datatypes
datatypes
datatypes
datatypes
datatypes
datatypes
datatypes.
datatypes
datatypes
datatypes.
pimlico.datatypes.
pimlico.datatypes.
126
pimlico.datatypes
127
pimlico.datatypes
pimlico.datatypes
pimlico.datatypes
datatypes
datatypes.
datatypes.
datatypes.

pimlico.
pimlico.
pimlico.
pimlico.
pimlico.
pimlico.
pimlico.
pimlico.
pimlico.
pimlico.
pimlico.
pimlico.
pimlico.

pimlico.
pimlico.
pimlico.
pimlico.

core.modules.
core.modules.
core.modules.
core.modules.
core.modules.
core.modules.
core.modules.
core.modules.
core.paths, 124
.core.visualize, 120
core.visualize.deps, 120
core.visualize.status, 120

inputs, 115

map, 104
map.filter, 100
map.multiproc, 100
map.singleproc, 102
map.threaded, 103
multistage, 117
options, 119

157
arrays, 130

.base, 131
.caevo, 136

.core, 136
.coref, 126
.coref.corenlp, 124
.coref.opennlp, 125
.dictionary, 137
.documents, 137

embeddings, 138

.features, 139
.files, 141

floats, 144
formatters, 127
formatters.features,

.formatters.tokenized,

.ints, 145
. Jsondoc, 146
.keras, 147
.parse, 128

parse.candc, 127
parse.dependency, 128
plotting, 148

185

Pimlico Documentation, Release 0.8

pimlico.datatypes.r, 148 pimlico.modules.input.text.raw_text_files,
pimlico.datatypes.results, 149 54
pimlico.datatypes.sklearn, 149 pimlico.modules.input.text_annotations,
pimlico.datatypes.spans, 150 55
pimlico.datatypes.table, 150 pimlico.modules.input.text_annotations.vrt,
pimlico.datatypes.tar, 151 55
pimlico.datatypes.tokenized, 152 pimlico.modules.input.text_annotations.vrt_text,
pimlico.datatypes.vrt, 154 56
pimlico.datatypes.word2vec, 154 pimlico.modules.input.xml, 57
pimlico.datatypes.word_annotations, 155 pimlico.modules.malt, 58
pimlico.datatypes.xml, 156 pimlico.modules.malt.conll_parser_input,
58

m pimlico.modules.malt.parse, 59
pimlico.modules, 36 pimlico.modules.opennlp, 59
pimlico.modules.caevo, 36 pimlico.modules.opennlp.coreference, 60
pimlico.modules.caevo.output, 37 pimlico.modules.opennlp.coreference_pipeline,
pimlico.modules.candc, 38 60
pimlico.modules.corenlp, 38 pimlico.modules.opennlp.ner, 62
pimlico.modules.corpora, 40 pimlico.modules.opennlp.parse, 62
pimlico.modules.corpora.concat, 40 pimlico.modules.opennlp.pos, 63
pimlico.modules.corpora.corpus_stats, pimlico.modules.opennlp.tokenize, 63

40 pimlico.modules.r, 64
pimlico.modules.corpora.format, 41 pimlico.modules.r.script, 64
pimlico.modules.corpora.list_filter,41 pimlico.modules.regex, 65
pimlico.modules.corpora.split, 42 pimlico.modules.regex.annotated_text,
pimlico.modules.corpora.subset, 43 65
pimlico.modules.corpora.tar, 44 pimlico.modules.sklearn, 66
pimlico.modules.corpora.tar_filter,45 pimlico.modules.sklearn.matrix_factorization,
pimlico.modules.corpora.vocab_builder, 66

45 pimlico.modules.text, 67
pimlico.modules.corpora.vocab_counter, pimlico.modules.text.char_tokenize, 67

46 pimlico.modules.text.normalize, 67
pimlico.modules.corpora.vocab_mapper, pimlico.modules.text.simple_tokenize

47 68
pimlico.modules.embeddings, 48 pimlico.modules.text.untokenize, 69
pimlico.modules.embeddings.dependencies, pimlico.modules.utility, 69

48 pimlico.modules.utility.alias, 69
pimlico.modules.embeddings.word2vec,49 pimlico.modules.utility.copy_file,70
pimlico.modules.features, 49 pimlico.modules.visualization, 71
pimlico.modules. features.term_feature_compmléep.modules.visualization.bar_chart,

49 71
pimlico.modules.features.term_feature_mapimkibaimddules.visualization.embeddings_plot,

50 72
pimlico.modules. features.vocab_builder,

51
pimlico.modules.features.vocab_mapper, pimlico, 181

51
pimlico.modules. input, 52 t
pimlico.modules. input.embeddings, 52 pimlico.test, 173
pimlico.modules.input.embeddings.fasttexpimlico.test.pipeline, 172

52
pimlico.modules.input.embeddings.fasttexbLgensim,

53 pimlico.utils, 180
pimlico.modules.input.text, 54 pimlico.utils.communicate, 173
186 Python Module Index

Pimlico Documentation, Release 0.8

pimlico.utils.
pimlico.utils.
pimlico.utils.
pimlico.utils.
pimlico.utils.
pimlico.utils.
pimlico.utils.
pimlico.utils.
pimlico.utils.
pimlico.utils.
pimlico.utils.
pimlico.utils.
pimlico.utils.
pimlico.utils.
pimlico.utils.
pimlico.utils.
pimlico.utils.

core, 174

docs, 173
docs.rest, 173
email, 175
filesystem, 175
format, 176
linguistic, 176
logging, 176
network, 177
pipes, 177

pos, 177
probability, 178
progress, 179
strings, 180

system, 180
timeout, 180
web, 180

Python Module Index

187

Pimlico Documentation, Release 0.8

188 Python Module Index

Index

A

abs_path_or_model_dir_path()
lico.core.paths), 124
absolute_filenames (NamedFileCollection attribute), 142
absolute_path (File attribute), 141
absolute_path (NamedFileWriter attribute), 143
absolute_path (RTabSeparatedValuesFile attribute), 149
absolute_path ~ (RTabSeparatedValuesFileWriter at-
tribute), 149
add_arguments() (BrowseCmd method), 90
add_arguments() (DepsCmd method), 87
add_arguments() (DumpCmd method), 88
add_arguments() (InputsCmd method), 89
add_arguments() (InstallCmd method), 87
add_arguments() (LoadCmd method), 88
add_arguments() (LongStoreCmd method), 89
add_arguments() (OutputCmd method), 89
add_arguments() (PimlicoCLISubcommand method), 92
add_arguments() (PythonShellCmd method), 91
add_arguments() (ResetCmd method), 91
add_arguments() (RunCmd method), 91
add_arguments() (Shell CLICmd method), 87
add_arguments() (StatusCmd method), 91
add_arguments() (UnlockCmd method), 90
add_arguments() (VariantsCmd method), 89
add_arguments() (VisualizeCmd method), 90
add_data_points() (IndexedTermFeatureListCor-
pusWriter method), 140, 166
add_document() (TarredCorpusWriter method), 152, 168
add_documents() (DictionaryWriter method), 137, 165
add_execution_history_record() (BaseModulelnfo
method), 108
add_written_file()
method), 143
AddAnnotationField (class in pimlico.datatypes), 170
AddAnnotationField (class in pim-
lico.datatypes.word_annotations), 156
AlignedTarredCorpora (class in pimlico.datatypes), 168
AlignedTarredCorpora (class in pimlico.datatypes.tar),

(in module pim-

(UnnamedFileCollectionWriter

152
all_dependencies() (SoftwareDependency method), 94
all_inputs_ready() (BaseModuleInfo method), 110
annotation_fields (WordAnnotationCorpus attribute),
156, 169
AnnotationParseError, 156, 170
append_module() (PipelineConfig method), 121
archive_iter() (AlignedTarredCorpora method), 152, 168
archive_iter() (DocumentMapOutputTypeWrapper
method), 100
archive_iter() (TarredCorpus method), 151, 167

archive_iter_decorator() (in module pim-
lico.cli.debug.stepper), 85

array (NumpyArray attribute), 130, 159

array (ScipySparseMatrix attribute), 130, 159

ask() (in module pimlico.cli.newmodule), 90

available() (SoftwareDependency method), 93

B

BaseModuleExecutor (class in pim-

lico.core.modules.base), 113
BaseModulelnfo (class in pimlico.core.modules.base),
107
batched_randint() (in module pimlico.utils.probability),
178
BeautifulSoupDependency (class in
lico.core.dependencies.python), 98
browse_cmd() (in module pimlico.cli.browser.tool), 84
browse_data() (in module pimlico.cli.browser.tool), 84
BrowseCmd (class in pimlico.cli.main), 90
build_graph_with_status() (in module
lico.core.visualize.status), 120

pim-

pim-

C

cached_property (class in pimlico.utils.core), 175
CaevoCorpus (class in pimlico.datatypes), 164
CaevoCorpus (class in pimlico.datatypes.caevo), 136
call_java() (in module pimlico.core.external.java), 98
CandcOutputCorpus (class in pimlico.datatypes), 158

189

Pimlico Documentation, Release 0.8

CandcOutputCorpus (class in pimlico.datatypes.parse),
129

CandcOutputCorpus (class in
lico.datatypes.parse.candc), 127

CandcOutputCorpusWriter (class in pimlico.datatypes),
158

pim-

CandcOutputCorpusWriter (class in pim-
lico.datatypes.parse), 129
CandcOutputCorpusWriter (class in pim-
lico.datatypes.parse.candc), 127
CharacterTokenizedCorpusWriter ~ (class in pim-
lico.datatypes), 169
CharacterTokenizedCorpusWriter ~ (class in pim-
lico.datatypes.tokenized), 153
CharacterTokenizedDocumentFormatter (class in pim-
lico.datatypes.formatters.tokenized), 127
CharacterTokenizedDocumentType (class in pim-
lico.datatypes), 169
CharacterTokenizedDocumentType (class in pim-
lico.datatypes.tokenized), 153
check_and_execute_modules() (in module pim-
lico.core.modules.execute), 114
check_and_install() (in module pim-

lico.core.dependencies.base), 94
check_for_cycles() (in module pimlico.core.config), 123
check_for_error() (InputQueueFeeder method), 105
check_invalid() (InputQueueFeeder method), 105
check_java() (in module pimlico.core.dependencies.java),

96

check_java_dependency() (in module pim-
lico.core.dependencies.java), 96
check_modules_ready() (in module pim-

lico.core.modules.execute), 114
check_pipeline() (in module pimlico.core.config), 123
check_ready_to_run() (BaseModuleInfo method), 112
check_ready_to_run() (MultistageModulelnfo method),

117
check_release() (in module pimlico.core.config), 123
check_type() (DynamicInputDatatypeRequirement

method), 134, 163
check_type() (FilesInput method), 143
check_type() (in module pimlico.core.modules.base), 113
check_type() (pimlico.datatypes.base.IterableCorpus

class method), 135
check_type() (pimlico.datatypes.base.PimlicoDatatype

class method), 133
check_type() (pimlico.datatypes.IterableCorpus

method), 162
check_type() (pimlico.datatypes.PimlicoDatatype class

method), 161
check_type() (Word AnnotationCorpusWithRequired-

Fields method), 156, 170
choose_from_list() (in module

lico.core.modules.options), 119

class

pim-

chunk_list() (in module pimlico.utils.core), 174
CleanCmd (class in pimlico.cli.clean), 87
clear_output_queues() (Py4JInterface method), 99
clear_storage_dir() (in module pimlico.test.pipeline), 172
close() (DummyFileDescriptor method), 179
cmdloop() (DataShell method), 86
collect_runnable_modules() (in
lico.core.modules.base), 113
collect_unexecuted_dependencies() (in module pim-
lico.core.modules.base), 112

module pim-

comma_separated_list() (in module pim-
lico.core.modules.options), 119
comma_separated_strings() (in module pim-

lico.core.modules.options), 119
command_desc (CleanCmd attribute), 88
command_desc (DumpCmd attribute), 88
command_desc (InputsCmd attribute), 89
command_desc (LoadCmd attribute), 88
command_desc (LongStoreCmd attribute), 89
command_desc (NewModuleCmd attribute), 90
command_desc (PimlicoCLISubcommand attribute), 92
command_desc (UnlockCmd attribute), 90
command_desc (VisualizeCmd attribute), 90
command_help (BrowseCmd attribute), 90
command_help (CleanCmd attribute), 88
command_help (DepsCmd attribute), 87
command_help (DumpCmd attribute), 88
command_help (EmailCmd attribute), 92
command_help (InputsCmd attribute), 89
command_help (InstallCmd attribute), 87
command_help (LoadCmd attribute), 88
command_help (LongStoreCmd attribute), 89
command_help (NewModuleCmd attribute), 90
command_help (OutputCmd attribute), 89
command_help (PimlicoCLISubcommand attribute), 92
command_help (PythonShellCmd attribute), 91
command_help (ResetCmd attribute), 91
command_help (RunCmd attribute), 91
command_help (Shell CLICmd attribute), 87
command_help (StatusCmd attribute), 91
command_help (UnlockCmd attribute), 90
command_help (VariantsCmd attribute), 89
command_help (VisualizeCmd attribute), 90
command_name (BrowseCmd attribute), 90
command_name (CleanCmd attribute), 88
command_name (DepsCmd attribute), 87
command_name (DumpCmd attribute), 88
command_name (EmailCmd attribute), 92
command_name (InputsCmd attribute), 89
command_name (InstallCmd attribute), 87
command_name (LoadCmd attribute), 88
command_name (LongStoreCmd attribute), 89
command_name (NewModuleCmd attribute), 90
command_name (OutputCmd attribute), 89

190

Index

Pimlico Documentation, Release 0.8

command_name (PimlicoCLISubcommand attribute), 92
command_name (PythonShellCmd attribute), 91
command_name (ResetCmd attribute), 91
command_name (RunCmd attribute), 91
command_name (Shell CLICmd attribute), 87
command_name (StatusCmd attribute), 91
command_name (UnlockCmd attribute), 90
command_name (VariantsCmd attribute), 89
command_name (VisualizeCmd attribute), 90
commands (MetadataCmd attribute), 86
commands (PythonCmd attribute), 86
commands (ShellCommand attribute), 86

compare_dotted_versions() (in module pim-
lico.core.dependencies.versions), 98
CoNLLDependencyParseCorpus ~ (class in pim-
lico.datatypes), 158
CoNLLDependencyParseCorpus (class in pim-
lico.datatypes.parse), 129
CoNLLDependencyParseCorpus (class in pim-
lico.datatypes.parse.dependency), 128
CoNLLDependencyParseCorpusWriter (class in pim-
lico.datatypes), 158
CoNLLDependencyParseCorpusWriter (class in pim-
lico.datatypes.parse), 129
CoNLLDependencyParseCorpusWriter (class in pim-
lico.datatypes.parse.dependency), 128
CoNLLDependencyParselnputCorpus (class in pim-
lico.datatypes), 158
CoNLLDependencyParselnputCorpus (class in pim-
lico.datatypes.parse), 129
CoNLLDependencyParselnputCorpus (class in pim-
lico.datatypes.parse.dependency), 128
CoNLLDependencyParselnputCorpusWriter (class in
pimlico.datatypes), 158
CoNLLDependencyParselnputCorpusWriter (class in
pimlico.datatypes.parse), 130
CoNLLDependencyParselnputCorpusWriter (class in

pimlico.datatypes.parse.dependency), 128

ConstituencyParseTreeCorpus (class in pim-
lico.datatypes), 157
ConstituencyParseTreeCorpus (class in pim-
lico.datatypes.parse), 128
ConstituencyParseTreeCorpusWriter (class in pim-
lico.datatypes), 157
ConstituencyParseTreeCorpusWriter (class in pim-
lico.datatypes.parse), 129
copy_dir_with_progress() (in module pim-

lico.utils.filesystem), 176

CORE_PIMLICO_DEPENDENCIES (in module pim-
lico.core.dependencies.core), 95

CorefCorpus (class in pimlico.datatypes.coref.corenlp),
125

CorefCorpus (class in pimlico.datatypes.coref.opennlp),
125

CorefCorpusWriter (class in pim-
lico.datatypes.coref.corenlp), 125
CorefCorpusWriter (class in pim-
lico.datatypes.coref.opennlp), 125
CorefDocumentType (class in pim-
lico.datatypes.coref.corenlp), 124
CorefDocumentType (class in pim-

lico.datatypes.coref.opennlp), 125
CoreNLPCorefCorpus (in module pimlico.datatypes),

157
CoreNLPCorefCorpus (in module pim-
lico.datatypes.coref), 126
CoreNLPCorefCorpusWriter (in module pim-
lico.datatypes), 157
CoreNLPCorefCorpusWriter (in module pim-

lico.datatypes.coref), 126
CorpusAlignmentError, 152, 168
CorpusState (class in pimlico.cli.browser.tool), 84
create_builder_class() (KerasModelBuilderClass
method), 148

create_from_options() (pim-
lico.datatypes.base.PimlicoDatatype class
method), 132

create_from_options() (pim-

lico.datatypes.PimlicoDatatype class method),
161

create_pool() (DocumentMapModuleExecutor method),
104

create_pool() (MultiprocessingMapModuleExecutor
method), 101

create_pool() (SingleThreadMapModuleExecutor
method), 102

create_pool() (ThreadingMapModuleExecutor method),
103

create_pop_up() (InputPopupLauncher method), 84

create_pop_up() (MessagePopupLauncher method), 84

create_queue() (DocumentProcessorPool static method),
106

create_queue() (MultiprocessingMapPool static method),
101

create_queue() (ThreadingMapPool static method), 103

custom_objects (KerasModel attribute), 147

D

data (Dict attribute), 136

data (NumericResult attribute), 149

data (StringList attribute), 136

data_path (PlotOutput attribute), 148

data_point_type (CaevoCorpus attribute), 136, 164

data_point_type (CandcOutputCorpus attribute),
129, 158

data_point_type (CoNLLDependencyParseCorpus
attribute), 128, 129, 158

127,

Index

191

Pimlico Documentation, Release 0.8

data_point_type (CoNLLDependencyParselnputCorpus
attribute), 128, 129, 158

data_point_type (ConstituencyParseTreeCorpus at-
tribute), 129, 157

data_point_type (CorefCorpus attribute), 125

data_point_type (FeatureListScoreCorpus attribute), 140,
166

data_point_type (FloatListDocumentCorpus attribute),
145

data_point_type (FloatListsDocumentCorpus attribute),
145

data_point_type (IndexedTermFeatureListCorpus at-
tribute), 140, 166

data_point_type (IntegerListDocumentCorpus attribute),
146

data_point_type (IntegerListsDocumentCorpus attribute),
146

data_point_type (IntegerTableDocumentCorpus at-
tribute), 151

data_point_type (IterableCorpus attribute), 135, 162

data_point_type (JsonDocumentCorpus attribute), 146,
167

data_point_type (KeyValueListCorpus attribute),
165

data_point_type (RawTextDirectory attribute), 144

data_point_type (RawTextFiles attribute), 144

data_point_type (ReaderOutputType attribute), 116

data_point_type (SentenceSpansCorpus attribute), 150

data_point_type (StanfordDependencyParseCorpus at-
tribute), 128, 129, 158

data_point_type (TarredCorpus attribute), 151, 167

data_point_type (TermFeatureListCorpus attribute), 139,
165

data_point_type (TokenizedCorpus attribute), 152, 168

data_point_type (WordAnnotationCorpus attribute), 155,
169

data_point_type (XmlDocumentlterator attribute), 157,
170

data_ready() (Dictionary method), 137, 164

data_ready() (DocumentMapOutputTypeWrapper
method), 100

data_ready() (File method), 141

data_ready() (NamedFileCollection method), 141

data_ready() (PimlicoDatatype method), 133, 161

data_ready() (ReaderOutputType method), 116

data_ready() (StringList method), 136

data_ready() (TarredCorpus method), 151, 167

data_ready() (UnnamedFileCollection method), 143

data_ready() (Word2VecModel method), 155

data_ready() (Word AnnotationCorpus method), 156, 170

data_ready() (XmlDocumentlterator method), 157, 171

DataPointType (class in pimlico.datatypes), 171

DataPointType (class in pimlico.datatypes.documents),
137

139,

DataShell (class in pimlico.cli.shell.base), 86

DATATYPE (CharacterTokenizedDocumentFormatter at-
tribute), 127

DATATYPE (DefaultFormatter attribute), 83

DATATYPE (DocumentBrowserFormatter attribute), 82

DATATYPE (FeatureListScoreFormatter attribute), 126

DATATYPE (FloatListsFormatter attribute), 145

DATATYPE (InvalidDocumentFormatter attribute), 83

DATATYPE (SegmentedLinesFormatter attribute), 127

DATATYPE (TokenizedDocumentFormatter attribute),
127

DATATYPE (VRTFormatter attribute), 154

datatype_doc_info (DynamicIlnputDatatypeRequirement
attribute), 134, 163

datatype_doc_info (FilesInput attribute), 143

datatype_full_class_name() (pim-
lico.datatypes.base.PimlicoDatatype class
method), 133

datatype_full_class_name() (pim-

lico.datatypes.PimlicoDatatype class method),
161

datatype_name (CandcOutputCorpus attribute), 127, 129,
158

datatype_name (CoNLLDependencyParseCorpus at-
tribute), 128, 129, 158

datatype_name (CoNLLDependencyParselnputCorpus
attribute), 128, 129, 158

datatype_name (ConstituencyParseTreeCorpus attribute),
129, 157

datatype_name (CorefCorpus attribute), 125

datatype_name (Dict attribute), 136

datatype_name (Dictionary attribute), 137, 164

datatype_name (DynamicOutputDatatype attribute), 133,
163

datatype_name (FeatureListScoreCorpus attribute), 140,
166

datatype_name (File attribute), 141

datatype_name (FloatListDocumentCorpus
145

datatype_name (FloatListsDocumentCorpus attribute),
145

datatype_name (IntegerListDocumentCorpus attribute),
146

datatype_name (IntegerListsDocumentCorpus attribute),
146

datatype_name (IntegerTableDocumentCorpus attribute),
151

datatype_name (IterableCorpus attribute), 135, 162

datatype_name (JsonDocumentCorpus attribute),
167

datatype_name (KerasModel attribute), 147

datatype_name (KeyValueListCorpus attribute), 139, 165

datatype_name (NamedFileCollection attribute), 141

datatype_name (NumericResult attribute), 149

attribute),

146,

192

Index

Pimlico Documentation, Release 0.8

datatype_name (NumpyArray attribute), 130, 159

datatype_name (PimlicoDatatype attribute), 132, 160

datatype_name (RawTextDirectory attribute), 144

datatype_name (ReaderOutputType attribute), 116

datatype_name (RTabSeparated ValuesFile attribute), 149

datatype_name (ScipySparseMatrix attribute), 130, 159

datatype_name (SingleTextDocument attribute), 136

datatype_name (StanfordDependencyParseCorpus
attribute), 128, 129, 158

datatype_name (StringList attribute), 136

datatype_name (TarredCorpus attribute), 151, 167

datatype_name (TermFeatureListCorpus attribute), 139,
165

datatype_name (TokenizedCorpus attribute), 152, 168

datatype_name (UnnamedFileCollection attribute), 143

datatype_name (WordAnnotationCorpus attribute), 155,
169

DatatypeLoadError, 135, 164

DatatypeWriteError, 135, 164

decorate_require_stored_len() (in
lico.core.modules.inputs), 116

default() (DataShell method), 86

DefaultFormatter (class in pimlico.cli.browser.formatter),
83

dependencies (BaseModulelnfo attribute), 111

dependencies() (Py4JSoftwareDependency method), 96

dependencies() (SoftwareDependency method), 93

DependencyCheckerError, 99

DependencyError, 113

DepsCmd (class in pimlico.cli.check), 87

Dict (class in pimlico.datatypes.core), 136

Dictionary (class in pimlico.datatypes), 164

Dictionary (class in pimlico.datatypes.dictionary), 137

DictionaryWriter (class in pimlico.datatypes), 165

DictionaryWriter (class in pimlico.datatypes.dictionary),
137

DictWriter (class in pimlico.datatypes.core), 136

dirsize() (in module pimlico.utils.filesystem), 175

do_EOF() (DataShell method), 86

doc_iter() (TarredCorpus method), 151, 167

document_preprocessors (TarredCorpus attribute), 151,
167

document_to_raw_data() (CandcOutputCorpusWriter
method), 127, 129, 158

document_to_raw_data() (CharacterTokenizedCor-
pusWriter method), 153, 169

document_to_raw_data() (CoNLLDependencyParseCor-
pusWriter method), 128, 129, 158

document_to_raw_data() (CoNLLDependencyParseln-
putCorpusWriter method), 128, 130, 158

document_to_raw_data() (ConstituencyParseTreeCor-
pusWriter method), 129, 157

document_to_raw_data() (CorefCorpusWriter method),
125

module pim-

document_to_raw_data() (FeatureListScoreCorpusWriter
method), 141, 166

document_to_raw_data() (FloatListDocumentCor-
pusWriter method), 145

document_to_raw_data() (FloatListsDocumentCor-
pusWriter method), 145

document_to_raw_data() (IntegerListDocumentCor-
pusWriter method), 146

document_to_raw_data() (IntegerListsDocumentCor-
pusWriter method), 146

document_to_raw_data() (IntegerTableDocumentCor-
pusWriter method), 151

document_to_raw_data() (JsonDocumentCorpusWriter
method), 147, 167

document_to_raw_data()
method), 139, 165

document_to_raw_data() (SegmentedLinesCorpusWriter
method), 153, 169

document_to_raw_data() (SentenceSpansCorpusWriter
method), 150

document_to_raw_data() (SimpleWordAnnotationCor-
pusWriter method), 156, 170

document_to_raw_data() (StanfordDependencyParseCor-
pusWriter method), 128, 129, 158

document_to_raw_data() (TarredCorpusWriter method),
152, 168

document_to_raw_data() (TermFeatureListCorpusWriter
method), 140, 165

document_to_raw_data()
method), 153, 168

(KeyValueListCorpusWriter

(TokenizedCorpusWriter

DocumentBrowserFormatter (class in pim-
lico.cli.browser.formatter), 82
DocumentCounterModuleExecutor ~ (class in pim-
lico.core.modules.inputs), 116
DocumentMapModuleExecutor ~ (class in pim-
lico.core.modules.map), 104
DocumentMapModulelnfo (class in pim-
lico.core.modules.map), 104
DocumentMapOutputTypeWrapper (class in pim-
lico.core.modules.map.filter), 100
DocumentMapProcessMixin (class in pim-
lico.core.modules.map), 106
DocumentProcessorPool (class in pim-

lico.core.modules.map), 106
download_file() (in module pimlico.utils.web), 180
DummygFileDescriptor (class in pimlico.utils.progress),
179
DumpCmd (class in pimlico.cli.loaddump), 88

DynamiclnputDatatypeRequirement (class in pim-
lico.datatypes), 163
DynamiclnputDatatypeRequirement (class in pim-

lico.datatypes.base), 134
DynamicOutputDatatype (class in pimlico.datatypes),
163

Index

193

Pimlico Documentation, Release 0.8

DynamicOutputDatatype (class in
lico.datatypes.base), 133

pim-

E

EmailCmd (class in pimlico.cli.testemail), 92

EmailConfig (class in pimlico.utils.email), 175

EmailError, 175

Embeddings (class in pimlico.datatypes.embeddings),
138

EmbeddingsWriter (class in
lico.datatypes.embeddings), 139

empty() (PipelineConfig static method), 122

empty_all_queues() (DocumentProcessorPool method),
106

empty_all_queues() (MultiprocessingMapPool method),
101

emptyline() (DataShell method), 86

emulated_datatype (PimlicoDatatype attribute), 132, 160

emulated_datatype (ReaderOutputType attribute), 116

enable_step() (PipelineConfig method), 123

enable_step_for_pipeline() (in module
lico.cli.debug.stepper), 85

encode() (StreamCommunicationPacket method), 173

Entity (class in pimlico.datatypes.coref.corenlp), 125

Entity (class in pimlico.datatypes.coref.opennlp), 125

execute() (BaseModuleExecutor method), 113

execute() (DocumentCounterModuleExecutor method),
116

execute() (DocumentMapModuleExecutor method), 105

execute() (MetadataCmd method), 86

execute() (PythonCmd method), 86

execute() (ShellCommand method), 86

execute_modules() (in module
lico.core.modules.execute), 114

execution_history (BaseModuleInfo attribute), 108

execution_history_path (BaseModuleInfo attribute), 108

extract_archive() (in module pimlico.utils.filesystem),
176

extract_file() (TarredCorpus method), 151, 167

pim-

pim-

pim-

extract_from_archive() (in module pim-
lico.utils.filesystem), 176
extract_input_options() (pim-

lico.core.modules.base.BaseModulelnfo
class method), 108

F

feature_dictionary (IndexedTermFeatureListCorpus at-
tribute), 140, 166
FeatureListScoreCorpus (class in pimlico.datatypes), 166

FeatureListScoreCorpus (class in pim-
lico.datatypes.features), 140
FeatureListScoreCorpusWriter (class in pim-

lico.datatypes), 166

FeatureListScoreCorpusWriter (class in pim-
lico.datatypes.features), 141

FeatureListScoreDocumentType (class in pim-
lico.datatypes), 166

FeatureListScoreDocumentType (class in pim-
lico.datatypes.features), 140

FeatureListScoreFormatter (class in pim-
lico.datatypes.formatters.features), 126

File (class in pimlico.datatypes.files), 141

FileInput (in module pimlico.datatypes.files), 143

filename_with_range() (in module pim-

lico.datatypes.files), 142
filenames (Dict attribute), 136
filenames (NamedFileCollection attribute), 141
filenames (NamedFileCollectionWriter attribute), 142
filenames (NumpyArray attribute), 130, 159
filenames (ScipySparseMatrix attribute), 130, 159
filenames (SingleTextDocument attribute), 136
FilesInput (class in pimlico.datatypes.files), 143
filter() (DictionaryWriter method), 137, 165
filter_document() (DocumentBrowserFormatter method),
83
filter_document() (InvalidDocumentFormatter method),
83
filter_document() (RawTextDirectory method), 144
find_all_data_paths() (PipelineConfig method), 122
find_data_path() (PipelineConfig method), 122
finish() (LittleOutputtingProgressBar method), 179

FloatListDocumentCorpus (class in pim-
lico.datatypes.floats), 145
FloatListDocumentCorpusWriter ~ (class in pim-
lico.datatypes.floats), 145
FloatListDocumentType (class in pim-
lico.datatypes.floats), 145
FloatListsDocumentCorpus (class in pim-
lico.datatypes.floats), 145
FloatListsDocumentCorpusWriter ~ (class in pim-
lico.datatypes.floats), 145
FloatListsDocumentType (class in pim-

lico.datatypes.floats), 144

FloatListsFormatter (class in pimlico.datatypes.floats),
144

fmt_frame_info() (in module pimlico.cli.debug), 85

format_document() (CharacterTokenizedDocumentFor-
matter method), 127

format_document() (DefaultFormatter method), 83

format_document() (DocumentBrowserFormatter
method), 82

format_document() (FeatureListScoreFormatter method),
126

format_document() (FloatListsFormatter method), 145

format_document() (InvalidDocumentFormatter method),
83

format_document() (SegmentedLinesFormatter method),

194

Index

Pimlico Documentation, Release 0.8

127

format_document()
method), 127

format_document() (VRTFormatter method), 154

format_execution_dependency_tree() (in module pim-
lico.core.modules.execute), 114

format_execution_error() (in module pimlico.cli.util), 93

format_file_size() (in module pimlico.utils.filesystem),
176

format_option_type() (in module
lico.core.modules.options), 119

formatters (CharacterTokenizedDocumentType attribute),
153, 169

formatters (DataPointType attribute), 137, 171

formatters (FeatureListScoreDocumentType attribute),
140, 166

formatters (FloatListsDocumentType attribute), 144

formatters (SegmentedLinesDocumentType attribute),
153, 169

formatters (TokenizedDocumentType attribute), 152, 168

formatters (VRTDocumentType attribute), 154

from_java_object() (Entity static method), 126

from_java_object() (Mention static method), 126

from_json() (Entity static method), 126

from_json() (Mention static method), 125, 126

from_local_config() (pimlico.utils.email. EmailConfig
class method), 175

from_string() (VRTText static method), 154

(TokenizedDocumentFormatter

pim-

full_datatype_name() (pim-
lico.datatypes.base.IterableCorpus class
method), 135

full_datatype_name() (pim-
lico.datatypes.base.PimlicoDatatype class

method), 133

full_datatype_name() (pimlico.datatypes.IterableCorpus
class method), 163

full_datatype_name() (pim-
lico.datatypes.PimlicoDatatype class method),
162

G

gateway_client_to_running_server() (in module pim-
lico.core.external.java), 99

get() (OutputQueue method), 177

get_absolute_output_dir() (BaseModulelnfo method),
109

get_absolute_path() (NamedFileCollection method), 142

get_absolute_path() (NamedFileCollectionWriter
method), 142

get_absolute_path() (UnnamedFileCollectionWriter

method), 143
get_all_executed_modules() (BaseModuleInfo method),
112

get_available() (OutputQueue method), 177

get_base_datatype_class()
method), 133, 163

(DynamicOutputDatatype

get_base_datatype_class() (pim-
lico.datatypes. Add AnnotationField class
method), 170

get_base_datatype_class() (pim-

lico.datatypes.word_annotations. AddAnnotationField

class method), 156
get_classpath() (in module
lico.core.dependencies.java), 96
get_classpath_components() (JavaDependency method),
95
get_console_logger() (in module pimlico.utils.logging),
176
get_custom_objects() (KerasModel method), 147
get_data() (Dictionary method), 137, 164
get_data_search_paths() (PipelineConfig method), 122
get_datatype() (AddAnnotationField method), 156, 170
get_datatype() (DynamicOutputDatatype method), 133,
163
get_dependencies() (in module pimlico.core.config), 124
get_dependent_modules() (PipelineConfig method), 121
get_detailed_status() (BaseModuleInfo method), 112
get_detailed_status() (Dictionary method), 137, 164
get_detailed_status() (DocumentMapModulelnfo
method), 104
get_detailed_status() (IterableCorpus method), 135, 162
get_detailed_status() (MultistageModuleInfo method),

pim-

117

get_detailed_status() (PimlicoDatatype method), 133,
161

get_detailed_status() (RTabSeparated ValuesFile method),
149

get_execution_dependency_tree() (BaseModulelInfo
method), 112

get_extra_outputs_from_options() (BaseModulelnfo

static method), 108
get_head_word() (Entity method), 125
get_input() (BaseModuleInfo method), 110
get_input_datatype() (BaseModuleInfo method), 109

get_input_decorator() (in module pim-
lico.cli.debug.stepper), 85

get_input_module_connection() (BaseModulelnfo
method), 109

get_input_software_dependencies() (BaseModulelnfo

method), 111
get_input_software_dependencies() (MultistageModule-
Info method), 117
get_input_type_requirements()
method), 111
get_installed_version()
method), 97
get_installed_version() (PythonPackageOnPip method),
98

(BaseModulelnfo

(PythonPackageDependency

Index

195

Pimlico Documentation, Release 0.8

get_installed_version() (SoftwareDependency method),
94

get_key_info_table() (pim-
lico.core.modules.base.BaseModulelnfo
class method), 107

get_key_info_table() (pim-

lico.core.modules.multistage.MultistageModuleInfo

class method), 118
get_log_file() (in module pimlico.core.logs), 124
get_metadata() (BaseModuleInfo method), 107
get_module_classpath() (in module
lico.core.dependencies.java), 96
get_module_output_dir() (BaseModulelnfo method), 109
get_module_schedule() (PipelineConfig method), 121
get_names() (DataShell method), 86
get_new_log_filename() (BaseModulelnfo method), 112
get_next_output_document() (InputQueueFeeder
method), 105
get_next_stage() (MultistageModuleInfo method), 118
get_nowait() (OutputQueue method), 177
get_output() (BaseModuleInfo method), 109
get_output_datatype() (BaseModulelnfo method), 109
get_output_dir() (BaseModuleInfo method), 109
get_output_software_dependencies() (BaseModulelnfo
method), 111
get_paths() (UnnamedFileCollection method), 143
get_paths_from_options() (UnnamedFileCollection
method), 143
get_pipeline() (in module pimlico.cli.pyshell), 91

pim-

get_pop_up_parameters() (InputPopupLauncher
method), 84

get_pop_up_parameters() (MessagePopupLauncher
method), 84

get_progress_bar() (in module pimlico.utils.progress),
179

get_redirect_func() (in module pim-
lico.core.external.java), 99

get_required_paths() (PimlicoDatatype method), 132,

161
get_required_paths() (RawTextDirectory method), 144
get_software_dependencies() (BaseModulelnfo method),
111
get_software_dependencies() (KerasModel method), 147
get_software_dependencies() (MultistageModuleInfo
method), 117
get_software_dependencies() (NumpyArray method),

155
get_software_dependencies()

method), 157, 171
get_storage_roots() (PipelineConfig method), 123
get_struct() (in module pimlico.datatypes.table), 150
get_transitive_dependencies() (BaseModuleInfo method),
111
get_uninstalled_dependencies() (TestPipeline method),

172

(XmlDocumentIterator

get_unused_local_port() (in module pim-
lico.utils.network), 177
get_unused_local_ports() (in module pim-

lico.utils.network), 177
get_writer() (DocumentMapModuleInfo method), 104
get_writers() (DocumentMapModuleInfo method), 104
GraphvizDependency (class in pim-
lico.core.visualize.deps), 120

H

help_text (MetadataCmd attribute), 86
help_text (PythonCmd attribute), 86
help_text (ShellCommand attribute), 86

import_member() (in module pimlico.utils.core), 174

import_package() (BeautifulSoupDependency method),
98

import_package() (PythonPackageDependency method),
97

incomplete_tasks (PimlicoDatatypeWriter attribute), 134,
162

increment() (SafeProgressBar method), 179

index2vocab (Embeddings attribute), 138

index2word (Embeddings attribute), 138

IndexedTermFeatureListCorpus (class in pim-
lico.datatypes), 165
IndexedTermFeatureListCorpus (class in pim-
lico.datatypes.features), 140
IndexedTermFeatureListCorpusWriter (class in pim-
lico.datatypes), 166
IndexedTermFeatureListCorpusWriter (class in pim-
lico.datatypes.features), 140
IndexedTermFeatureListDataPointType (class in pim-
lico.datatypes), 166
IndexedTermFeatureListDataPointType (class in pim-

lico.datatypes.features), 140

130, 159 . o infinite_cycle() (in module pimlico.utils.core), 174
get_software_dependencies() (PimlicoDatatype method), input_corpora (DocumentMapModulelnfo attribute), 104

132, 161 .) . input_module_factory() (in module pim-
get_software_dependencies() (ScipySparseMatrix lico.core.modules.inputs), 115

method), 130, %59 input_module_options (DataPointType attribute), 137,
get_software_dependencies() (SklearnModel method), 171

150 . input_module_options (PimlicoDatatype attribute), 132,
get_software_dependencies() (Word2VecModel method), 160
196 Index

Pimlico Documentation, Release 0.8

input_module_options (RawTextDirectory attribute), 144

input_module_options (UnnamedFileCollection at-
tribute), 143

input_module_options (XmlDocumentlterator attribute),
157, 170

input_names (BaseModulelnfo attribute), 108

input_ready() (BaseModulelnfo method), 110

InputDialog (class in pimlico.cli.browser.tool), 84

InputModulelnfo (class in pimlico.core.modules.inputs),
115

InputPopupLauncher (class in pimlico.cli.browser.tool),
84

InputQueueFeeder (class in pimlico.core.modules.map),
105

InputsCmd (class in pimlico.cli.locations), 89

install() (in module pimlico.core.dependencies.base), 94

install() (JavaJarsDependency method), 96

install() (Py4JSoftwareDependency method), 96

install() (PythonPackageOnPip method), 98

install() (SoftwareDependency method), 94

install_core_dependencies() (in module pimlico), 181

install_dependencies() (in module pim-
lico.core.dependencies.base), 94

installable() (JavaDependency method), 95

installable() (JavaJarsDependency method), 95

installable() (Py4JSoftwareDependency method), 96

installable() (PythonPackageOnPip method), 97

installable() (PythonPackageSystemwidelnstall method),
97

installable() (SoftwareDependency method), 93

installable() (SystemCommandDependency method), 94

installation_instructions() (GraphvizDependency
method), 120

installation_instructions() (PythonPackageSystemwide-
Install method), 97

installation_instructions()
method), 93

InstallationError, 94

InstallCmd (class in pimlico.cli.check), 87

instantiate_additional_datatype() (PimlicoDatatype
method), 133, 161

instantiate_output_datatype() (BaseModulelnfo method),
109

instantiate_output_datatype() (InputModulelnfo method),
115

instantiate_output_datatype_decorator() (in module pim-
lico.cli.debug.stepper), 85

int_size (IntegerListDocumentType attribute), 146

(SoftwareDependency

IntegerListDocumentCorpus (class in pim-
lico.datatypes.ints), 146

IntegerListDocumentCorpusWriter (class in pim-
lico.datatypes.ints), 146

IntegerListDocumentType (class in pim-

lico.datatypes.ints), 146

IntegerListsDocumentCorpus (class in pim-
lico.datatypes.ints), 146
IntegerListsDocumentCorpusWriter (class in pim-
lico.datatypes.ints), 146
IntegerListsDocumentType (class in pim-
lico.datatypes.ints), 145
IntegerTableDocumentCorpus (class in pim-
lico.datatypes.table), 150
IntegerTableDocumentCorpusWriter (class in pim-
lico.datatypes.table), 151
IntegerTableDocumentType (class in pim-
lico.datatypes.table), 150
InternalModuleConnection (class in pim-
lico.core.modules.multistage), 118
invalid_doc_on_error() (in module pim-
lico.core.modules.map), 105
invalid_docs_on_error() (in module pim-
lico.core.modules.map), 105
invalid_document_or_text() (InvalidDocument static

method), 135, 163
InvalidDocument (class in pimlico.datatypes), 163
InvalidDocument (class in pimlico.datatypes.base), 135
InvalidDocumentFormatter (class in pim-
lico.cli.browser.formatter), 83
(pimlico.core.modules.base.BaseModulelnfo
class method), 110
is_identifier() (in module pimlico.utils.core), 174
is_input() (pimlico.core.modules.base.BaseModulelnfo
class method), 111
is_locked() (BaseModulelnfo method), 112
is_locked() (MultistageModuleInfo method), 118
is_multiple_input() (BaseModuleInfo method), 109
iterable_input_reader_factory() (in module
lico.core.modules.inputs), 116
IterableCorpus (class in pimlico.datatypes), 162
IterableCorpus (class in pimlico.datatypes.base), 134
IterableCorpusWriter (class in pimlico.datatypes), 163
IterableCorpusWriter (class in pimlico.datatypes.base),
135

is_filter()

pim-

J

jars (Py4JSoftwareDependency attribute), 96

JavaDependency (class in pim-
lico.core.dependencies.java), 95
JavaJarsDependency (class in pim-

lico.core.dependencies.java), 95
JavaProcessError, 99
json_string() (in module pimlico.core.modules.options),

119
JsonDocumentCorpus (class in pimlico.datatypes), 166
JsonDocumentCorpus (class in pim-

lico.datatypes.jsondoc), 146
JsonDocumentCorpusWriter (class in pimlico.datatypes),
167

Index

197

Pimlico Documentation, Release 0.8

JsonDocumentCorpusWriter (class in pim-
lico.datatypes.jsondoc), 147

K

KerasModel (class in pimlico.datatypes.keras), 147

KerasModelBuilderClass (class in pim-
lico.datatypes.keras), 147

KerasModelBuilderClassWriter (class in pim-

lico.datatypes.keras), 147

KerasModelWriter (class in pimlico.datatypes.keras), 147

keypress() (InputDialog method), 84

KeyValueListCorpus (class in pimlico.datatypes), 165

KeyValueListCorpus (class in pim-
lico.datatypes.features), 139

KeyValueListCorpusWriter (class in pimlico.datatypes),
165

KeyValueListCorpusWriter (class in
lico.datatypes.features), 139

KeyValueListDocumentType (class in pimlico.datatypes),
165

KeyValueListDocumentType (class in
lico.datatypes.features), 139

pim-

pim-

L

label (NumericResult attribute), 149
launch_gateway() (in module pimlico.core.external.java),
99
launch_shell() (in module pimlico.cli.shell.runner), 87
length (StreamCommunicationPacket attribute), 173
limited_shuffle() (in module pimlico.utils.probability),
178
limited_shuffle_numpy/() (in
lico.utils.probability), 178
list_archive_iter() (TarredCorpus method), 151, 167
LittleOutputtingProgressBar (class in
lico.utils.progress), 179
load() (InvalidDocument static method), 135, 163
load() (PipelineConfig static method), 122
load_build_params() (KerasModelBuilderClass method),
148
load_datatype() (in module pimlico.datatypes), 164
load_datatype() (in module pimlico.datatypes.base), 135
load_executor() (BaseModuleInfo method), 107
load_formatter() (in module
lico.cli.browser.formatter), 83
load_local_config() (PipelineConfig static method), 122
load_model() (KerasModel method), 147
load_model() (KerasModelBuilderClass method), 148
load_model() (SklearnModel method), 150
load_model() (Word2VecModel method), 155

module pim-

pim-

pim-

load_pipeline() (TestPipeline static method), 172
LoadCmd (class in pimlico.cli.loaddump), 88
lock() (BaseModulelnfo method), 112

lock_path (BaseModulelnfo attribute), 112
LongStoreCmd (class in pimlico.cli.main), 89

M

main_module (BaseModulelnfo attribute), 107
make_py4j_errors_safe() (in module
lico.core.external.java), 99

make_table() (in module pimlico.utils.docs.rest), 173
Mention (class in pimlico.datatypes.coref.corenlp), 125
Mention (class in pimlico.datatypes.coref.opennlp), 126
MessageDialog (class in pimlico.cli.browser.tool), 84
MessagePopupLauncher (class in pim-
lico.cli.browser.tool), 84
metadata (PimlicoDatatype attribute), 132, 160
metadata_filename (BaseModulelnfo attribute), 107
MetadataCmd (class in pimlico.cli.shell.commands), 86
missing_data() (BaseModuleInfo method), 110
missing_module_data() (BaseModulelnfo method), 110
model (Word2VecModel attribute), 155
module_dependencies (PipelineConfig attribute), 121
module_dependents (PipelineConfig attribute), 121
module_executable (BaseModulelnfo attribute), 107
module_executable (InputModulelnfo attribute), 115
module_executable (MultistageModulelnfo attribute),
117
module_executor_override (BaseModulelnfo attribute),
107
module_inputs (BaseModulelnfo attribute), 107
module_number_to_name() (in module pimlico.cli.util),
92
module_numbers_to_names()
lico.cli.util), 92
module_optional_inputs (BaseModulelnfo attribute), 107
module_optional_outputs (BaseModulelnfo attribute),
107
module_options (BaseModulelnfo attribute), 107
module_outputs (BaseModulelnfo attribute), 107
module_outputs (DocumentMapModulelnfo attribute),
104
module_package_name()
lico.core.modules.base.BaseModulelnfo
class method), 112
module_readable_name (BaseModulelnfo attribute), 107
module_status() (in module pimlico.cli.status), 92
module_status_color() (in module pimlico.cli.status), 91
module_type_name (BaseModulelnfo attribute), 107
module_type_name (InputModulelnfo attribute), 115
ModuleAlreadyCompletedError, 115

pim-

(in module pim-

(pim-

load_module_executor() (in module pim-
lico.core.modules.base), 113 ModuleConnection (class in pim-
load_module_info() (in module pim- lico.c'ore.modules.multistage), 118
lico.core.modules.base), 113 ModuleExecutionError, 115
198 Index

Pimlico Documentation, Release 0.8

ModuleExecutorLoadError, 113
Modulelnfol.oadError, 113

ModuleInputConnection (class in pim-
lico.core.modules.multistage), 119

ModuleNotReadyError, 115

ModuleOptionParseError, 120

ModuleOutputConnection (class in pim-

lico.core.modules.multistage), 119
modules (PipelineConfig attribute), 121
ModuleStage (class in pimlico.core.modules.multistage),
118
ModuleTypeError, 113
multiline_tablate() (in module pimlico.utils.format), 176
MultipleInputs (class in pimlico.datatypes), 164
MultipleInputs (class in pimlico.datatypes.base), 134
multiprocessing_executor_factory() (in module pim-
lico.core.modules.map.multiproc), 101
MultiprocessingMapModuleExecutor (class in pim-
lico.core.modules.map.multiproc), 101

MultiprocessingMapPool (class in pim-
lico.core.modules.map.multiproc), 101

MultiprocessingMapProcess (class in pim-
lico.core.modules.map.multiproc), 100

multistage_module() (in module pim-
lico.core.modules.multistage), 118

MultistageModulelnfo (class in pim-
lico.core.modules.multistage), 117

MultistageModulePreparationError, 119

multiwith() (in module pimlico.utils.core), 174

N

named_file_collection_union() (in module pim-

lico.datatypes.files), 142
NamedFile() (in module pimlico.datatypes.files), 143
NamedFileCollection (class in pimlico.datatypes.files),
141
NamedFileCollectionWriter (class in
lico.datatypes.files), 142
NamedFileWriter (class in pimlico.datatypes.files), 143
new_client() (Py4JInterface method), 99
new_filename() (in module pimlico.utils.filesystem), 176
NewModuleCmd (class in pimlico.cli.newmodule), 90
next_document() (CorpusState method), 84
no_retry_gateway() (in module
lico.core.external.java), 99
non_filter_datatype (DocumentMapOutputTypeWrapper
attribute), 100
NonOutputtingProgressBar (class in
lico.utils.progress), 179
NonPTBTagError, 177
normalize_cell() (in module pimlico.utils.docs.rest), 173
normed_vectors (Embeddings attribute), 138
notify_no_more_inputs() (DocumentMapProcessMixin
method), 106

pim-

pim-

pim-

notify_no_more_inputs() (DocumentProcessorPool
method), 106
notify_no_more_inputs()
method), 101
notify_no_more_inputs()
method), 101
notify_no_more_inputs()
method), 103
NumericResult (class in pimlico.datatypes.results), 149
NumericResultWriter (class in pimlico.datatypes.results),
149
NumpyAurray (class in pimlico.datatypes), 158
NumpyArray (class in pimlico.datatypes.arrays), 130
NumpyArray Writer (class in pimlico.datatypes), 159
NumpyArrayWriter (class in pimlico.datatypes.arrays),
130

(MultiprocessingMapPool
(MultiprocessingMapProcess

(ThreadingMapThread

O

OpenNLPCorefCorpus (in module pimlico.datatypes),

157
OpenNLPCorefCorpus (in module pim-
lico.datatypes.coref), 126
OpenNLPCorefCorpusWriter ~ (in ~ module pim-
lico.datatypes), 157
OpenNLPCorefCorpusWriter (in ~ module pim-
lico.datatypes.coref), 126
opt_type_help() (in module pim-

lico.core.modules.options), 119
option_message() (in module pimlico.cli.debug.stepper),
85
output_name (DocumentMapOutputTypeWrapper at-
tribute), 100
output_names (BaseModulelnfo attribute), 108
output_p4j_error_info() (in module
lico.core.external.java), 99
output_stack_trace() (in module pimlico.cli.debug), 85
OutputCmd (class in pimlico.cli.locations), 89
OutputConsumer (class in pimlico.core.external.java), 99
OutputQueue (class in pimlico.utils.pipes), 177

P

paragraphs (VRTText attribute), 154

path (StringList attribute), 136

path_name_to_doc_name()
method), 143

path_relative_to_config() (PipelineConfig method), 121

pdf_path (PlotOutput attribute), 148

pimlico (module), 181

pimlico.cfg (module), 180

pimlico.cli (module), 93

pimlico.cli.browser (module), 85

pimlico.cli.browser.formatter (module), 82

pimlico.cli.browser.tool (module), 84

pimlico.cli.check (module), 87

pim-

(UnnamedFileCollection

Index

199

Pimlico Documentation, Release 0.8

pimlico.cli.clean (module), 87
pimlico.cli.debug (module), 85
pimlico.cli.debug.stepper (module), 85
pimlico.cli.loaddump (module), 88
pimlico.cli.locations (module), 89
pimlico.cli.main (module), 89
pimlico.cli.newmodule (module), 90
pimlico.cli.pyshell (module), 90
pimlico.cli.reset (module), 91

pimlico.cli.run (module), 91

pimlico.cli.shell (module), 87
pimlico.cli.shell.base (module), 85
pimlico.cli.shell.commands (module), 86
pimlico.cli.shell.runner (module), 87
pimlico.cli.status (module), 91
pimlico.cli.subcommands (module), 92
pimlico.cli.testemail (module), 92
pimlico.cli.util (module), 92

pimlico.core (module), 124
pimlico.core.config (module), 121
pimlico.core.dependencies (module), 98
pimlico.core.dependencies.base (module), 93
pimlico.core.dependencies.core (module), 95
pimlico.core.dependencies.java (module), 95
pimlico.core.dependencies.python (module), 97
pimlico.core.dependencies.versions (module), 98
pimlico.core.external (module), 100
pimlico.core.external.java (module), 98
pimlico.core.logs (module), 124
pimlico.core.modules (module), 120
pimlico.core.modules.base (module), 106
pimlico.core.modules.execute (module), 114
pimlico.core.modules.inputs (module), 115
pimlico.core.modules.map (module), 104
pimlico.core.modules.map.filter (module), 100
pimlico.core.modules.map.multiproc (module), 100
pimlico.core.modules.map.singleproc (module), 102
pimlico.core.modules.map.threaded (module), 103
pimlico.core.modules.multistage (module), 117
pimlico.core.modules.options (module), 119
pimlico.core.paths (module), 124
pimlico.core.visualize (module), 120
pimlico.core.visualize.deps (module), 120
pimlico.core.visualize.status (module), 120
pimlico.datatypes (module), 157
pimlico.datatypes.arrays (module), 130
pimlico.datatypes.base (module), 131
pimlico.datatypes.caevo (module), 136
pimlico.datatypes.core (module), 136
pimlico.datatypes.coref (module), 126
pimlico.datatypes.coref.corenlp (module), 124
pimlico.datatypes.coref.opennlp (module), 125
pimlico.datatypes.dictionary (module), 137
pimlico.datatypes.documents (module), 137

pimlico.datatypes.embeddings (module), 138
pimlico.datatypes.features (module), 139
pimlico.datatypes.files (module), 141
pimlico.datatypes.floats (module), 144
pimlico.datatypes.formatters (module), 127
pimlico.datatypes.formatters.features (module), 126
pimlico.datatypes.formatters.tokenized (module), 127
pimlico.datatypes.ints (module), 145
pimlico.datatypes.jsondoc (module), 146
pimlico.datatypes.keras (module), 147
pimlico.datatypes.parse (module), 128
pimlico.datatypes.parse.candc (module), 127
pimlico.datatypes.parse.dependency (module), 128
pimlico.datatypes.plotting (module), 148
pimlico.datatypes.r (module), 148
pimlico.datatypes.results (module), 149
pimlico.datatypes.sklearn (module), 149
pimlico.datatypes.spans (module), 150
pimlico.datatypes.table (module), 150
pimlico.datatypes.tar (module), 151
pimlico.datatypes.tokenized (module), 152
pimlico.datatypes.vrt (module), 154
pimlico.datatypes.word2vec (module), 154
pimlico.datatypes.word_annotations (module), 155
pimlico.datatypes.xml (module), 156
pimlico.modules (module), 36
pimlico.modules.caevo (module), 36
pimlico.modules.caevo.output (module), 37
pimlico.modules.candc (module), 38
pimlico.modules.corenlp (module), 38
pimlico.modules.corpora (module), 40
pimlico.modules.corpora.concat (module), 40
pimlico.modules.corpora.corpus_stats (module), 40
pimlico.modules.corpora.format (module), 41
pimlico.modules.corpora.list_filter (module), 41
pimlico.modules.corpora.split (module), 42
pimlico.modules.corpora.subset (module), 43
pimlico.modules.corpora.tar (module), 44
pimlico.modules.corpora.tar_filter (module), 45
pimlico.modules.corpora.vocab_builder (module), 45
pimlico.modules.corpora.vocab_counter (module), 46
pimlico.modules.corpora.vocab_mapper (module), 47
pimlico.modules.embeddings (module), 48
pimlico.modules.embeddings.dependencies (module), 48
pimlico.modules.embeddings.word2vec (module), 49
pimlico.modules.features (module), 49

pimlico.modules.features.term_feature_compiler (mod-

ule), 49
pimlico.modules.features.term_feature_matrix_builder

(module), 50
pimlico.modules.features.vocab_builder (module), 51
pimlico.modules.features.vocab_mapper (module), 51
pimlico.modules.input (module), 52
pimlico.modules.input.embeddings (module), 52

200

Index

Pimlico Documentation, Release 0.8

pimlico.modules.input.embeddings.fasttext (module), 52
pimlico.modules.input.embeddings.fasttext_gensim
(module), 53
pimlico.modules.input.text (module), 54
pimlico.modules.input.text.raw_text_files (module), 54
pimlico.modules.input.text_annotations (module), 55
pimlico.modules.input.text_annotations.vrt (module), 55
pimlico.modules.input.text_annotations.vrt_text (mod-
ule), 56
pimlico.modules.input.xml (module), 57
pimlico.modules.malt (module), 58
pimlico.modules.malt.conll_parser_input (module), 58
pimlico.modules.malt.parse (module), 59
pimlico.modules.opennlp (module), 59
pimlico.modules.opennlp.coreference (module), 60
pimlico.modules.opennlp.coreference_pipeline (module),
60
pimlico.modules.opennlp.ner (module), 62
pimlico.modules.opennlp.parse (module), 62
pimlico.modules.opennlp.pos (module), 63
pimlico.modules.opennlp.tokenize (module), 63
pimlico.modules.r (module), 64
pimlico.modules.r.script (module), 64
pimlico.modules.regex (module), 65
pimlico.modules.regex.annotated_text (module), 65
pimlico.modules.sklearn (module), 66
pimlico.modules.sklearn.matrix_factorization (module),
66
pimlico.modules.text (module), 67
pimlico.modules.text.char_tokenize (module), 67
pimlico.modules.text.normalize (module), 67
pimlico.modules.text.simple_tokenize (module), 68
pimlico.modules.text.untokenize (module), 69
pimlico.modules.utility (module), 69
pimlico.modules.utility.alias (module), 69
pimlico.modules.utility.copy_file (module), 70
pimlico.modules.visualization (module), 71
pimlico.modules.visualization.bar_chart (module), 71
pimlico.modules.visualization.embeddings_plot (mod-
ule), 72
pimlico.test (module), 173
pimlico.test.pipeline (module), 172
pimlico.utils (module), 180
pimlico.utils.communicate (module), 173
pimlico.utils.core (module), 174
pimlico.utils.docs (module), 173
pimlico.utils.docs.rest (module), 173
pimlico.utils.email (module), 175
pimlico.utils.filesystem (module), 175
pimlico.utils.format (module), 176
pimlico.utils.linguistic (module), 176
pimlico.utils.logging (module), 176
pimlico.utils.network (module), 177
pimlico.utils.pipes (module), 177

pimlico.utils.pos (module), 177

pimlico.utils.probability (module), 178

pimlico.utils.progress (module), 179

pimlico.utils.strings (module), 180

pimlico.utils.system (module), 180

pimlico.utils.timeout (module), 180

pimlico.utils.web (module), 180

PimlicoCLISubcommand (class in
lico.cli.subcommands), 92

PimlicoDatatype (class in pimlico.datatypes), 159

PimlicoDatatype (class in pimlico.datatypes.base), 131

PimlicoDatatypeWriter (class in pimlico.datatypes), 162

PimlicoDatatypeWriter (class in pimlico.datatypes.base),
134

PimlicoJavaLibrary (class in
lico.core.dependencies.java), 96

PimlicoPythonShellContext (class in pimlico.cli.pyshell),
90

PipelineCheckError, 123

PipelineConfig (class in pimlico.core.config), 121

PipelineConfigParseError, 123

PipelineStructureError, 123

plot() (PlotOutput method), 148

PlotOutput (class in pimlico.datatypes.plotting), 148

PlotOutputWriter (class in pimlico.datatypes.plotting),
148

POOL_TYPE (MultiprocessingMapModuleExecutor at-
tribute), 101

POOL_TYPE (ThreadingMapModuleExecutor attribute),
103

pos_tag_to_ptb() (in module pimlico.utils.pos), 177

pos_tags_to_ptb() (in module pimlico.utils.pos), 177

postloop() (DataShell method), 86

postprocess() (DocumentMapModuleExecutor method),
104

postprocess() (MultiprocessingMapModuleExecutor
method), 101

postprocess() (ThreadingMapModuleExecutor method),
103

preloop() (DataShell method), 86

prepare_data() (PimlicoDatatype method), 132, 161

prepare_data() (RawTextDirectory method), 144

prepare_data() (XmlDocumentlterator method), 157, 171

preprocess() (DocumentMapModuleExecutor method),
104

preprocess_config_file() (in module pimlico.core.config),
123

print_dependency_leaf_problems() (in module pim-
lico.core.config), 124

print_execution_error() (in module pimlico.cli.util), 93

print_missing_dependencies() = (in module = pim-
lico.core.config), 124

problems() (JavaDependency method), 95

problems() (PythonPackageDependency method), 97

pim-

pim-

Index

201

Pimlico Documentation, Release 0.8

problems() (SoftwareDependency method), 93

problems() (SystemCommandDependency method), 94

process_document() (CharacterTokenizedDocumentType
method), 153, 169

process_document() (CorefDocumentType method), 125

process_document() (DocumentMapProcessMixin
method), 106

process_document() (FeatureListScoreDocumentType
method), 140, 166

process_document() (FloatListDocumentType method),
145

process_document() (FloatListsDocumentType method),
144

process_document() (IntegerListDocumentType method),
146

process_document()
method), 145

process_document()
method), 150

process_document() (KeyValueListDocumentType
method), 139, 165

process_document() (RawDocumentType method), 138,
171

process_document() (SegmentedLinesDocumentType
method), 153, 169

process_document() (SentenceSpansDocumentType
method), 150

process_document() (TarredCorpus method), 151, 167

process_document() (TermFeatureListDocumentType
method), 139, 165

process_document() (TokenizedDocumentType method),
152, 168

process_document()
method), 128, 158

process_document() (VRTDocumentType method), 154

process_document() (WordAnnotationsDocumentType
method), 155, 170

process_document_data_with_datatype() (IterableCorpus
method), 135, 163

process_documents() (DocumentMapProcessMixin
method), 106

(IntegerListsDocumentType

(IntegerTableDocumentType

(TreeStringsDocumentType

process_module_options() (in module pim-
lico.core.modules.options), 119
process_module_options() (pim-

lico.core.modules.base.BaseModuleInfo
class method), 108
PROCESS_TYPE (MultiprocessingMapPool attribute),
101
ProcessOutput (class in pimlico.core.modules.map), 105
ProgressBarlter (class in pimlico.utils.progress), 179
prompt (DataShell attribute), 86
provide_further_outputs() (BaseModulelnfo method),
108
Py4JInterface (class in pimlico.core.external.java), 98

Py4JSafeJavaError, 99

Py4JSoftwareDependency (class in
lico.core.dependencies.java), 96

PythonCmd (class in pimlico.cli.shell.commands), 86

pim-

PythonPackageDependency (class in pim-
lico.core.dependencies.python), 97

PythonPackageOnPip (class in pim-
lico.core.dependencies.python), 97

PythonPackageSystemwidelnstall ~ (class in pim-

lico.core.dependencies.python), 97
PythonShellCmd (class in pimlico.cli.pyshell), 90

Q

gget() (in module pimlico.utils.pipes), 177

R

RAW_INPUT (DocumentBrowserFormatter attribute), 82
RawDocumentType (class in pimlico.datatypes), 171
RawDocumentType (class in
lico.datatypes.documents), 137
RawTextDirectory (class in pimlico.datatypes.files), 144
RawTextDocumentType (class in pimlico.datatypes), 171
RawTextDocumentType (class in pim-
lico.datatypes.documents), 138
RawTextFiles (class in pimlico.datatypes.files), 143
read() (DummyFileDescriptor method), 179
read() (StreamCommunicationPacket static method), 173
read_annotation_fields() (WordAnnotationCorpus
method), 156, 169
read_data() (SingleTextDocument method), 136
read_file() (NamedFileCollection method), 142
read_files() (NamedFileCollection method), 142
read_floats() (FloatListDocumentType method), 145
read_ints() (IntegerListDocumentType method), 146
read_rows() (FloatListsDocumentType method), 144
read_rows() (IntegerListsDocumentType method), 146
read_rows() (IntegerTableDocumentType method), 150

pim-

ReaderOutputType (class in pim-
lico.core.modules.inputs), 115

readLine() (DummyFileDescriptor method), 179

recursive_deps() (in module pim-

lico.core.dependencies.base), 94
remove_duplicates() (in module pimlico.utils.core), 174

remove_temporary_redirects() (OutputConsumer
method), 99

require_tasks() (PimlicoDatatypeWriter method), 134,
162

requires_data_preparation (PimlicoDatatype attribute),
132, 160

requires_data_preparation (RawTextDirectory attribute),
144

requires_data_preparation (XmlDocumentlterator at-
tribute), 157, 170

reset_all_modules() (PipelineConfig method), 121

202

Index

Pimlico Documentation, Release 0.8

reset_execution() (BaseModuleInfo method), 112
reset_execution() (MultistageModuleInfo method), 118
ResetCmd (class in pimlico.cli.reset), 91
result (NumericResult attribute), 149
retrieve_processing_status() (DocumentMapModuleEx-
ecutor method), 104
retry_open() (in module pimlico.utils.filesystem), 176
row_size (IntegerTableDocumentType attribute), 150
RTabSeparatedValuesFile (class in pimlico.datatypes.r),
148
RTabSeparatedValuesFileWriter
lico.datatypes.r), 149
run() (InputQueueFeeder method), 105
run() (MultiprocessingMapProcess method), 101
run() (OutputConsumer method), 99
run() (ThreadingMapThread method), 103
run_command() (BrowseCmd method), 90
run_command() (CleanCmd method), 88
run_command() (DepsCmd method), 87
run_command() (DumpCmd method), 88
run_command() (EmailCmd method), 92
run_command() (InputsCmd method), 89
run_command() (InstallCmd method), 87
run_command() (LoadCmd method), 88
run_command() (LongStoreCmd method), 89
run_command() (NewModuleCmd method), 90
run_command() (OutputCmd method), 89
run_command() (PimlicoCLISubcommand method), 92
run_command() (PythonShellCmd method), 91
run_command() (ResetCmd method), 91
run_command() (RunCmd method), 91
run_command() (ShellCLICmd method), 87
run_command() (StatusCmd method), 91
run_command() (UnlockCmd method), 90
run_command() (VariantsCmd method), 89
run_command() (VisualizeCmd method), 90
run_test_pipeline() (in module pimlico.test.pipeline), 172
run_test_suite() (in module pimlico.test.pipeline), 172
RunCmd (class in pimlico.cli.run), 91

S

safe_import_bs4() (in module
lico.core.dependencies.python), 98
SafeProgressBar (class in pimlico.utils.progress), 179

(class in pim-

pim-

satisfies_typecheck() (in module pim-
lico.core.modules.base), 113
save_popup_launcher() (in module pim-

lico.cli.browser.tool), 84

ScipySparseMatrix (class in pimlico.datatypes), 159

ScipySparseMatrix (class in pimlico.datatypes.arrays),
130

ScipySparseMatrixWriter (class in pimlico.datatypes),
159

ScipySparseMatrix Writer (class in pim-
lico.datatypes.arrays), 131
script_path (PlotOutput attribute), 148
SegmentedLinesCorpusWriter (class in pim-
lico.datatypes), 169
SegmentedLinesCorpusWriter (class in pim-
lico.datatypes.tokenized), 153
SegmentedLinesDocumentType (class in pim-
lico.datatypes), 169
SegmentedLinesDocumentType (class in pim-
lico.datatypes.tokenized), 153
SegmentedLinesFormatter (class in pim-
lico.datatypes.formatters.tokenized), 127
send_final_report_email() (in module pim-
lico.core.modules.execute), 114
send_module_report_email() (in module pim-

lico.core.modules.execute), 114
send_pimlico_email() (in module pimlico.utils.email),
175
send_text_email() (in module pimlico.utils.email), 175
sentence_boundary_re (WordAnnotationsDocumentType
attribute), 155, 170
sentences (VRTText attribute), 154
SentenceSpansCorpus (class in pimlico.datatypes.spans),
150

SentenceSpansCorpusWriter (class in pim-
lico.datatypes.spans), 150

SentenceSpansDocumentType (class in pim-
lico.datatypes.spans), 150

sequential_document_sample() (in module pim-

lico.utils.probability), 178
sequential_sample() (in module pimlico.utils.probability),
178
set_array() (NumpyArrayWriter method), 130, 159
set_matrix() (ScipySparseMatrixWriter method),
159
set_metadata_value() (BaseModuleInfo method), 107
set_metadata_values() (BaseModuleInfo method), 107
set_proc_title() (in module pimlico.utils.system), 180
set_up() (DocumentMapProcessMixin method), 106
shell_commands (IterableCorpus attribute), 135, 162
shell_commands (PimlicoDatatype attribute), 132, 160
shell_commands (Word2VecModel attribute), 155
Shell CLICmd (class in pimlico.cli.shell.runner), 87
ShellCommand (class in pimlico.cli.shell.base), 85
ShellContextError, 91
ShellError, 86
shutdown() (DocumentProcessorPool method), 106
shutdown() (InputQueueFeeder method), 105
shutdown() (MultiprocessingMapPool method), 101
shutdown() (ThreadingMapPool method), 103
shutdown() (ThreadingMapThread method), 103
signals (InputDialog attribute), 84
similarities() (in module pimlico.utils.strings), 180

131,

Index

203

Pimlico Documentation, Release 0.8

SimpleWordAnnotationCorpusWriter (class in pim-
lico.datatypes), 170
SimpleWordAnnotationCorpusWriter (class in pim-

lico.datatypes.word_annotations), 156
single_process_executor_factory() (in module
lico.core.modules.map.singleproc), 102
SINGLE_PROCESS_TYPE (MultiprocessingMapPool
attribute), 101
SingleTextDocument (class in pimlico.datatypes.core),
136

pim-

SingleTextDocumentWriter (class in pim-
lico.datatypes.core), 136
SingleThreadMapModuleExecutor (class in pim-

lico.core.modules.map.singleproc), 102

skip() (CorpusState method), 84

skip_invalid() (in module pimlico.core.modules.map),
105

skip_invalids() (in module pimlico.core.modules.map),
105

skip_popup_launcher() (in
lico.cli.browser.tool), 84

SklearnModel (class in pimlico.datatypes.sklearn), 150

SklearnModelWriter (class in pimlico.datatypes.sklearn),
149

slice_progress() (in module pimlico.utils.progress), 179

module pim-

SoftwareDependency (class in pim-
lico.core.dependencies.base), 93
SoftwareVersion (class in pim-

lico.core.dependencies.versions), 98
sorted_by_similarity() (in module pimlico.utils.strings),
180
split_seq() (in module pimlico.utils.core), 174
split_seq_after() (in module pimlico.utils.core), 174
stages (MultistageModulelnfo attribute), 117

StanfordDependencyParseCorpus (class in pim-
lico.datatypes), 158

StanfordDependencyParseCorpus ~ (class in pim-
lico.datatypes.parse), 129

StanfordDependencyParseCorpus (class in pim-
lico.datatypes.parse.dependency), 128

StanfordDependencyParseCorpusWriter (class in pim-
lico.datatypes), 158

StanfordDependencyParseCorpusWriter (class in pim-
lico.datatypes.parse), 129

StanfordDependencyParseCorpusWriter (class in pim-
lico.datatypes.parse.dependency), 128

start() (LittleOutputtingProgressBar method), 179

start() (Py4JInterface method), 99

start_java_process() (in module pim-

lico.core.external.java), 98
start_worker() (MultiprocessingMapPool method), 101
start_worker() (ThreadingMapPool method), 103
status (BaseModulelnfo attribute), 108
status (MultistageModulelnfo attribute), 118

status_colored() (in module pimlico.cli.status), 91

StatusCmd (class in pimlico.cli.status), 91

step (PipelineConfig attribute), 123

Stepper (class in pimlico.cli.debug.stepper), 85

stop() (Py4JInterface method), 99

StopProcessing, 115

str_to_bool() (in module pimlico.core.modules.options),
119

StreamCommunicationError, 174

StreamCommunicationPacket (class in
lico.utils.communicate), 173

StringList (class in pimlico.datatypes.core), 136

StringListWriter (class in pimlico.datatypes.core), 136

strip_punctuation() (in module pimlico.utils.linguistic),
176

subordinate_additional_name() (PimlicoDatatypeWriter
method), 134, 162

subsample() (in module pimlico.utils.probability), 178

supplied_additional (PimlicoDatatype attribute), 132, 160

supplied_additional (PlotOutput attribute), 148

SystemCommandDependency (class in
lico.core.dependencies.base), 94

pim-

pim-

T

table_div() (in module pimlico.utils.docs.rest), 173
TarredCorpus (class in pimlico.datatypes), 167
TarredCorpus (class in pimlico.datatypes.tar), 151
TarredCorpuslterationError, 152, 168
TarredCorpusWriter (class in pimlico.datatypes), 167
TarredCorpusWriter (class in pimlico.datatypes.tar), 151
task_complete() (PimlicoDatatypeWriter method), 134,
162
tear_down() (DocumentMapProcessMixin method), 106
term_dictionary (IndexedTermFeatureListCorpus at-
tribute), 140, 166
TermFeatureListCorpus (class in pimlico.datatypes), 165

TermFeatureListCorpus (class in pim-
lico.datatypes.features), 139
TermFeatureListCorpusWriter (class in pim-
lico.datatypes), 165
TermFeatureListCorpusWriter (class in pim-
lico.datatypes.features), 139
TermFeatureListDocumentType (class in pim-
lico.datatypes), 165
TermFeatureListDocumentType (class in pim-
lico.datatypes.features), 139
terminate_process() (in module pim-

lico.utils.communicate), 173
test_all_modules() (TestPipeline method), 172
test_input_module() (TestPipeline method), 172
test_module_execution() (TestPipeline method), 172
TestPipeline (class in pimlico.test.pipeline), 172
TestPipelineRunError, 172
THREAD_TYPE (ThreadingMapPool attribute), 103

204

Index

Pimlico Documentation, Release 0.8

threading_executor_factory() (in module pim-
lico.core.modules.map.threaded), 103
ThreadingMapModuleExecutor (class in pim-
lico.core.modules.map.threaded), 103
ThreadingMapPool (class in pim-
lico.core.modules.map.threaded), 103
ThreadingMapThread (class in pim-
lico.core.modules.map.threaded), 103
timeout() (in module pimlico.utils.timeout), 180
timeout_process() (in module pim-

lico.utils.communicate), 173
title_box() (in module pimlico.utils.format), 176
to_json_dict() (Entity method), 126
to_json_dict() (Mention method), 125, 126
to_keyed_vectors() (Embeddings method), 139
TokenizedCorpus (class in pimlico.datatypes), 168
TokenizedCorpus (class in pimlico.datatypes.tokenized),

152
TokenizedCorpusWriter (class in pimlico.datatypes), 168
TokenizedCorpusWriter (class in pim-
lico.datatypes.tokenized), 153
TokenizedDocumentFormatter (class in pim-

lico.datatypes.formatters.tokenized), 127
TokenizedDocumentType (class in pimlico.datatypes),
168
TokenizedDocumentType (class in
lico.datatypes.tokenized), 152
TreeStringsDocumentType (class in pimlico.datatypes),
158
TreeStringsDocumentType (class in
lico.datatypes.parse), 128
trim_docstring() (in module pimlico.utils.docs), 173
truncate() (in module pimlico.utils.strings), 180
type_checking_name() (DynamicInputDatatypeRequire-
ment method), 134, 163

pim-

pim-

type_checking_name() (pim-
lico.datatypes.base.IterableCorpus class
method), 135

type_checking_name() (pim-
lico.datatypes.base.PimlicoDatatype class

method), 133
type_checking_name() (pimlico.datatypes.IterableCorpus
class method), 162

U

unlock() (BaseModulelnfo method), 112
UnlockCmd (class in pimlico.cli.main), 89
UnnamedFileCollection (class in pimlico.datatypes.files),
142
UnnamedFileCollectionWriter
lico.datatypes.files), 143
unpacker (IntegerListDocumentType attribute), 146
unpacker (IntegerListsDocumentType attribute), 145
unpacker (IntegerTableDocumentType attribute), 150
update() (SafeProgressBar method), 179
update_processing_status() (DocumentMapModuleEx-
ecutor method), 105

(class in pim-

V

VariantsCmd (class in pimlico.cli.main), 89

vector_size (Embeddings attribute), 138

vectors (Embeddings attribute), 138

VisualizeCmd (class in pimlico.cli.main), 90

Vocab (class in pimlico.datatypes.embeddings), 138
vocab (Embeddings attribute), 138

VRTDocumentType (class in pimlico.datatypes.vrt), 154
VRTFormatter (class in pimlico.datatypes.vrt), 154
VRTText (class in pimlico.datatypes.vrt), 154
VRTWord (class in pimlico.datatypes.vrt), 154

W

walk() (RawTextDirectory method), 144
weights_filename (KerasModelBuilderClass attribute),

148

Word2VecModel (class in pimlico.datatypes.word2vec),
154

Word2VecModelWriter (class in pim-

lico.datatypes.word2vec), 155

word_boundary (WordAnnotationsDocumentType
attribute), 155, 170

(WordAnnotationsDocumentType
155, 170
word_strings (VRTText attribute), 154
word_vec() (Embeddings method), 138
word_vecs() (Embeddings method), 138
WordAnnotationCorpus (class in pimlico.datatypes), 169

word_re attribute),

; . WordAnnotationCorpus (class in pim-
type_checklng_name() o (pim- lico.datatypes.word_annotations), 155
lico.datatypes.PimlicoDatatype class method), WordAnnotationCorpusWithRequiredFields (class in
162 i) pimlico.datatypes), 170
typecheck_.form.atter() (in module PIM= " yword AnnotationCorpusWithRequiredFields ~ (class in
hf:o.ch.browser.formatter), 83 pimlico.datatypes.word_annotations), 156
typecheck_input() (BaseModulelnfo method), 111 WordAnnotationCorpusWriter (class in pim-
typecheck_inputs() (BaseModuleInfo method), 111 lico.datatypes), 170
typecheck_inputs() (MultistageModuleInfo method), 117 0 4 A nnotationCor pusWriter (class in pim-
TypeCheckError, 113 lico.datatypes.word_annotations), 156
WordAnnotationsDocumentType (class in pim-
lico.datatypes), 170
Index 205

Pimlico Documentation, Release 0.8

WordAnnotationsDocumentType (class in pim-
lico.datatypes.word_annotations), 155

WorkerShutdownError, 106

WorkerStartupError, 106

wrap_module_info_as_filter() (in module pim-
lico.core.modules.map.filter), 100

wrap_tarred_corpus() (in module pim-
lico.cli.debug.stepper), 85

wrapped_module_info (DocumentMapOutputTypeWrap-
per attribute), 100

write() (DummyFileDescriptor method), 179

write_architecture() (KerasModelWriter method), 147

write_data() (NamedFileWriter method), 143

write_dictionaries() (IndexedTermFeatureListCor-
pusWriter method), 140, 166

write_file() (NamedFileCollectionWriter method), 142

write_file() (UnnamedFileCollectionWriter method), 143

write_keyed_vectors() (EmbeddingsWriter method), 139

write_keyed_vectors() (Word2VecModelWriter method),
155

write_metadata() (PimlicoDatatypeWriter method), 134,
162

write_model() (KerasModelWriter method), 147

write_model() (SklearnModelWriter method), 149

write_row() (RTabSeparatedValuesFileWriter method),
149

write_vectors() (EmbeddingsWriter method), 139

write_vocab_list() (EmbeddingsWriter method), 139

write_weights() (KerasModelBuilderClassWriter
method), 147

write_weights() (KerasModelWriter method), 147

write_word2vec_model() (Word2VecModelWriter
method), 155

write_word_counts() (EmbeddingsWriter method), 139

X

XmlDocumentlterator (class in pimlico.datatypes), 170
XmlDocumentlterator (class in pimlico.datatypes.xml),
156

206

Index

	Contents
	Python Module Index

