Source code for pimlico.datatypes.parse

"""
TODO Parse tress are temporary implementations that don't actually parse the data, but just split it into
 sentences.
"""
import re

from pimlico.datatypes.tar import TarredCorpus, TarredCorpusWriter, pass_up_invalid

from . import candc
from .candc import *
from . import dependency
from .dependency import *


__all__ = ["ConstituencyParseTreeCorpus", "ConstituencyParseTreeCorpusWriter"] + candc.__all__ + dependency.__all__


[docs]class ConstituencyParseTreeCorpus(TarredCorpus): """ Note that this is not fully developed yet. At the moment, you'll just get, for each document, a list of the texts of each tree. In future, they will be better represented. """ datatype_name = "parse_trees"
[docs] def process_document(self, data): if data.strip(): # TODO This should read in the parse trees and return a tree data structure return data.split("\n\n") else: return []
[docs]class ConstituencyParseTreeCorpusWriter(TarredCorpusWriter): @pass_up_invalid def document_to_raw_data(self, doc): # Put a blank line between every parse return "\n\n".join(doc)
# Bracket parse tree reading based on NLTK # http://www.nltk.org/_modules/nltk/corpus/reader/bracket_parse.html SORTTAGWRD = re.compile(r'\((\d+) ([^\s()]+) ([^\s()]+)\)') TAGWORD = re.compile(r'\(([^\s()]+) ([^\s()]+)\)') WORD = re.compile(r'\([^\s()]+ ([^\s()]+)\)') EMPTY_BRACKETS = re.compile(r'\s*\(\s*\(') class Tree(list): """ A Tree represents a hierarchical grouping of leaves and subtrees. For example, each constituent in a syntax tree is represented by a single Tree. Based on NLTK's tree data structure: http://www.nltk.org/_modules/nltk/tree.html A tree's children are encoded as a list of leaves and subtrees, where a leaf is a basic (non-tree) value; and a subtree is a nested Tree. >>> from nltk.tree import Tree >>> print(Tree(1, [2, Tree(3, [4]), 5])) (1 2 (3 4) 5) >>> vp = Tree('VP', [Tree('V', ['saw']), ... Tree('NP', ['him'])]) >>> s = Tree('S', [Tree('NP', ['I']), vp]) >>> print(s) (S (NP I) (VP (V saw) (NP him))) >>> print(s[1]) (VP (V saw) (NP him)) >>> print(s[1,1]) (NP him) >>> t = Tree.fromstring("(S (NP I) (VP (V saw) (NP him)))") >>> s == t True >>> t[1][1].set_label('X') >>> t[1][1].label() 'X' >>> print(t) (S (NP I) (VP (V saw) (X him))) >>> t[0], t[1,1] = t[1,1], t[0] >>> print(t) (S (X him) (VP (V saw) (NP I))) The length of a tree is the number of children it has. >>> len(t) 2 The set_label() and label() methods allow individual constituents to be labeled. For example, syntax trees use this label to specify phrase tags, such as "NP" and "VP". Several Tree methods use "tree positions" to specify children or descendants of a tree. Tree positions are defined as follows: - The tree position *i* specifies a Tree's *i*\ th child. - The tree position ``()`` specifies the Tree itself. - If *p* is the tree position of descendant *d*, then *p+i* specifies the *i*\ th child of *d*. I.e., every tree position is either a single index *i*, specifying ``tree[i]``; or a sequence *i1, i2, ..., iN*, specifying ``tree[i1][i2]...[iN]``. Construct a new tree. This constructor can be called in one of two ways: - ``Tree(label, children)`` constructs a new tree with the specified label and list of children. - ``Tree.fromstring(s)`` constructs a new tree by parsing the string ``s``. """ def __init__(self, node, children): list.__init__(self, children) self.label = node #//////////////////////////////////////////////////////////// # Comparison operators #//////////////////////////////////////////////////////////// def __eq__(self, other): return (self.__class__ is other.__class__ and (self.label, list(self)) == (other.label, list(other))) def __lt__(self, other): if not isinstance(other, Tree): # raise_unorderable_types("<", self, other) # Sometimes children can be pure strings, # so we need to be able to compare with non-trees: return self.__class__.__name__ < other.__class__.__name__ elif self.__class__ is other.__class__: return (self.label, list(self)) < (other.label, list(other)) else: return self.__class__.__name__ < other.__class__.__name__ # @total_ordering doesn't work here, since the class inherits from a builtin class __ne__ = lambda self, other: not self == other __gt__ = lambda self, other: not (self < other or self == other) __le__ = lambda self, other: self < other or self == other __ge__ = lambda self, other: not self < other #//////////////////////////////////////////////////////////// # Disabled list operations #//////////////////////////////////////////////////////////// def __mul__(self, v): raise TypeError('Tree does not support multiplication') def __rmul__(self, v): raise TypeError('Tree does not support multiplication') def __add__(self, v): raise TypeError('Tree does not support addition') def __radd__(self, v): raise TypeError('Tree does not support addition') #//////////////////////////////////////////////////////////// # Indexing (with support for tree positions) #//////////////////////////////////////////////////////////// def __getitem__(self, index): if isinstance(index, (int, slice)): return list.__getitem__(self, index) elif isinstance(index, (list, tuple)): if len(index) == 0: return self elif len(index) == 1: return self[index[0]] else: return self[index[0]][index[1:]] else: raise TypeError("%s indices must be integers, not %s" % (type(self).__name__, type(index).__name__)) def __setitem__(self, index, value): if isinstance(index, (int, slice)): return list.__setitem__(self, index, value) elif isinstance(index, (list, tuple)): if len(index) == 0: raise IndexError('The tree position () may not be ' 'assigned to.') elif len(index) == 1: self[index[0]] = value else: self[index[0]][index[1:]] = value else: raise TypeError("%s indices must be integers, not %s" % (type(self).__name__, type(index).__name__)) def __delitem__(self, index): if isinstance(index, (int, slice)): return list.__delitem__(self, index) elif isinstance(index, (list, tuple)): if len(index) == 0: raise IndexError('The tree position () may not be deleted.') elif len(index) == 1: del self[index[0]] else: del self[index[0]][index[1:]] else: raise TypeError("%s indices must be integers, not %s" % (type(self).__name__, type(index).__name__)) #//////////////////////////////////////////////////////////// # Basic tree operations #//////////////////////////////////////////////////////////// def leaves(self): """ Return the leaves of the tree. >>> t = Tree.fromstring("(S (NP (D the) (N dog)) (VP (V chased) (NP (D the) (N cat))))") >>> t.leaves() ['the', 'dog', 'chased', 'the', 'cat'] :return: a list containing this tree's leaves. The order reflects the order of the leaves in the tree's hierarchical structure. :rtype: list """ leaves = [] for child in self: if isinstance(child, Tree): leaves.extend(child.leaves()) else: leaves.append(child) return leaves def flatten(self): """ Return a flat version of the tree, with all non-root non-terminals removed. >>> t = Tree.fromstring("(S (NP (D the) (N dog)) (VP (V chased) (NP (D the) (N cat))))") >>> print(t.flatten()) (S the dog chased the cat) :return: a tree consisting of this tree's root connected directly to its leaves, omitting all intervening non-terminal nodes. :rtype: Tree """ return Tree(self.label(), self.leaves()) def height(self): """ Return the height of the tree. >>> t = Tree.fromstring("(S (NP (D the) (N dog)) (VP (V chased) (NP (D the) (N cat))))") >>> t.height() 5 >>> print(t[0,0]) (D the) >>> t[0,0].height() 2 :return: The height of this tree. The height of a tree containing no children is 1; the height of a tree containing only leaves is 2; and the height of any other tree is one plus the maximum of its children's heights. :rtype: int """ max_child_height = 0 for child in self: if isinstance(child, Tree): max_child_height = max(max_child_height, child.height()) else: max_child_height = max(max_child_height, 1) return 1 + max_child_height def treepositions(self, order='preorder'): """ >>> t = Tree.fromstring("(S (NP (D the) (N dog)) (VP (V chased) (NP (D the) (N cat))))") >>> t.treepositions() # doctest: +ELLIPSIS [(), (0,), (0, 0), (0, 0, 0), (0, 1), (0, 1, 0), (1,), (1, 0), (1, 0, 0), ...] >>> for pos in t.treepositions('leaves'): ... t[pos] = t[pos][::-1].upper() >>> print(t) (S (NP (D EHT) (N GOD)) (VP (V DESAHC) (NP (D EHT) (N TAC)))) :param order: One of: ``preorder``, ``postorder``, ``bothorder``, ``leaves``. """ positions = [] if order in ('preorder', 'bothorder'): positions.append( () ) for i, child in enumerate(self): if isinstance(child, Tree): childpos = child.treepositions(order) positions.extend((i,)+p for p in childpos) else: positions.append( (i,) ) if order in ('postorder', 'bothorder'): positions.append( () ) return positions def subtrees(self, filter=None): """ Generate all the subtrees of this tree, optionally restricted to trees matching the filter function. >>> t = Tree.fromstring("(S (NP (D the) (N dog)) (VP (V chased) (NP (D the) (N cat))))") >>> for s in t.subtrees(lambda t: t.height() == 2): ... print(s) (D the) (N dog) (V chased) (D the) (N cat) :type filter: function :param filter: the function to filter all local trees """ if not filter or filter(self): yield self for child in self: if isinstance(child, Tree): for subtree in child.subtrees(filter): yield subtree def productions(self): """ Generate the productions that correspond to the non-terminal nodes of the tree. For each subtree of the form (P: C1 C2 ... Cn) this produces a production of the form P -> C1 C2 ... Cn. >>> t = Tree.fromstring("(S (NP (D the) (N dog)) (VP (V chased) (NP (D the) (N cat))))") >>> t.productions() [S -> NP VP, NP -> D N, D -> 'the', N -> 'dog', VP -> V NP, V -> 'chased', NP -> D N, D -> 'the', N -> 'cat'] :rtype: list(Production) """ if not isinstance(self.label, basestring): raise TypeError('Productions can only be generated from trees having node labels that are strings') prods = [(self.label, self.child_names())] for child in self: if isinstance(child, Tree): prods.extend(child.productions()) return prods def child_names(self): names = [] for child in self: if isinstance(child, Tree): names.append(child.label) else: names.append(child) return names def pos(self): """ Return a sequence of pos-tagged words extracted from the tree. >>> t = Tree.fromstring("(S (NP (D the) (N dog)) (VP (V chased) (NP (D the) (N cat))))") >>> t.pos() [('the', 'D'), ('dog', 'N'), ('chased', 'V'), ('the', 'D'), ('cat', 'N')] :return: a list of tuples containing leaves and pre-terminals (part-of-speech tags). The order reflects the order of the leaves in the tree's hierarchical structure. :rtype: list(tuple) """ pos = [] for child in self: if isinstance(child, Tree): pos.extend(child.pos()) else: pos.append((child, self.label)) return pos def leaf_treeposition(self, index): """ :return: The tree position of the ``index``-th leaf in this tree. I.e., if ``tp=self.leaf_treeposition(i)``, then ``self[tp]==self.leaves()[i]``. :raise IndexError: If this tree contains fewer than ``index+1`` leaves, or if ``index<0``. """ if index < 0: raise IndexError('index must be non-negative') stack = [(self, ())] while stack: value, treepos = stack.pop() if not isinstance(value, Tree): if index == 0: return treepos else: index -= 1 else: for i in range(len(value)-1, -1, -1): stack.append((value[i], treepos+(i,))) raise IndexError('index must be less than or equal to len(self)') def treeposition_spanning_leaves(self, start, end): """ :return: The tree position of the lowest descendant of this tree that dominates ``self.leaves()[start:end]``. :raise ValueError: if ``end <= start`` """ if end <= start: raise ValueError('end must be greater than start') # Find the tree positions of the start & end leaves, and # take the longest common subsequence. start_treepos = self.leaf_treeposition(start) end_treepos = self.leaf_treeposition(end-1) # Find the first index where they mismatch: for i in range(len(start_treepos)): if i == len(end_treepos) or start_treepos[i] != end_treepos[i]: return start_treepos[:i] return start_treepos #//////////////////////////////////////////////////////////// # Parsing #//////////////////////////////////////////////////////////// @classmethod def fromstring(cls, s, brackets='()', read_node=None, read_leaf=None, node_pattern=None, leaf_pattern=None, remove_empty_top_bracketing=False): """ Read a bracketed tree string and return the resulting tree. Trees are represented as nested brackettings, such as:: (S (NP (NNP John)) (VP (V runs))) :type s: str :param s: The string to read :type brackets: str (length=2) :param brackets: The bracket characters used to mark the beginning and end of trees and subtrees. :type read_node: function :type read_leaf: function :param read_node, read_leaf: If specified, these functions are applied to the substrings of ``s`` corresponding to nodes and leaves (respectively) to obtain the values for those nodes and leaves. They should have the following signature: read_node(str) -> value For example, these functions could be used to process nodes and leaves whose values should be some type other than string (such as ``FeatStruct``). Note that by default, node strings and leaf strings are delimited by whitespace and brackets; to override this default, use the ``node_pattern`` and ``leaf_pattern`` arguments. :type node_pattern: str :type leaf_pattern: str :param node_pattern, leaf_pattern: Regular expression patterns used to find node and leaf substrings in ``s``. By default, both nodes patterns are defined to match any sequence of non-whitespace non-bracket characters. :type remove_empty_top_bracketing: bool :param remove_empty_top_bracketing: If the resulting tree has an empty node label, and is length one, then return its single child instead. This is useful for treebank trees, which sometimes contain an extra level of bracketing. :return: A tree corresponding to the string representation ``s``. If this class method is called using a subclass of Tree, then it will return a tree of that type. :rtype: Tree """ if not isinstance(brackets, basestring) or len(brackets) != 2: raise TypeError('brackets must be a length-2 string') if re.search('\s', brackets): raise TypeError('whitespace brackets not allowed') # Normalization: originally in BracketTreeCorpusReader # If there's an empty set of brackets surrounding the actual parse, then strip them off. if EMPTY_BRACKETS.match(s): s = s.strip()[1:-1] # Replace leaves of the form (!), (,), with (! !), (, ,) s = re.sub(r"\((.)\)", r"(\1 \1)", s) # Replace leaves of the form (tag word root) with (tag word) s = re.sub(r"\(([^\s()]+) ([^\s()]+) [^\s()]+\)", r"(\1 \2)", s) # Construct a regexp that will tokenize the string. open_b, close_b = brackets open_pattern, close_pattern = (re.escape(open_b), re.escape(close_b)) if node_pattern is None: node_pattern = '[^\s%s%s]+' % (open_pattern, close_pattern) if leaf_pattern is None: leaf_pattern = '[^\s%s%s]+' % (open_pattern, close_pattern) token_re = re.compile('%s\s*(%s)?|%s|(%s)' % ( open_pattern, node_pattern, close_pattern, leaf_pattern)) # Walk through each token, updating a stack of trees. stack = [(None, [])] # list of (node, children) tuples for match in token_re.finditer(s): token = match.group() # Beginning of a tree/subtree if token[0] == open_b: if len(stack) == 1 and len(stack[0][1]) > 0: cls._parse_error(s, match, 'end-of-string') label = token[1:].lstrip() if read_node is not None: label = read_node(label) stack.append((label, [])) # End of a tree/subtree elif token == close_b: if len(stack) == 1: if len(stack[0][1]) == 0: cls._parse_error(s, match, open_b) else: cls._parse_error(s, match, 'end-of-string') label, children = stack.pop() stack[-1][1].append(cls(label, children)) # Leaf node else: if len(stack) == 1: cls._parse_error(s, match, open_b) if read_leaf is not None: token = read_leaf(token) stack[-1][1].append(token) # check that we got exactly one complete tree. if len(stack) > 1: cls._parse_error(s, 'end-of-string', close_b) elif len(stack[0][1]) == 0: cls._parse_error(s, 'end-of-string', open_b) else: assert stack[0][0] is None assert len(stack[0][1]) == 1 tree = stack[0][1][0] # If the tree has an extra level with node='', then get rid of # it. E.g.: "((S (NP ...) (VP ...)))" if remove_empty_top_bracketing and tree.label == '' and len(tree) == 1: tree = tree[0] # return the tree. return tree @classmethod def _parse_error(cls, s, match, expecting): """ Display a friendly error message when parsing a tree string fails. :param s: The string we're parsing. :param match: regexp match of the problem token. :param expecting: what we expected to see instead. """ # Construct a basic error message if match == 'end-of-string': pos, token = len(s), 'end-of-string' else: pos, token = match.start(), match.group() msg = '%s.read(): expected %r but got %r\n%sat index %d.' % ( cls.__name__, expecting, token, ' '*12, pos) # Add a display showing the error token itsels: s = s.replace('\n', ' ').replace('\t', ' ') offset = pos if len(s) > pos+10: s = s[:pos+10]+'...' if pos > 10: s = '...'+s[pos-10:] offset = 13 msg += '\n%s"%s"\n%s^' % (' '*16, s, ' '*(17+offset)) raise ValueError(msg) #//////////////////////////////////////////////////////////// # Visualization & String Representation #//////////////////////////////////////////////////////////// def pformat(self, margin=70, indent=0, nodesep='', parens='()', quotes=False): """ :return: A pretty-printed string representation of this tree. :rtype: str :param margin: The right margin at which to do line-wrapping. :type margin: int :param indent: The indentation level at which printing begins. This number is used to decide how far to indent subsequent lines. :type indent: int :param nodesep: A string that is used to separate the node from the children. E.g., the default value ``':'`` gives trees like ``(S: (NP: I) (VP: (V: saw) (NP: it)))``. """ # Try writing it on one line. s = self._pformat_flat(nodesep, parens, quotes) if len(s) + indent < margin: return s # If it doesn't fit on one line, then write it on multi-lines. if isinstance(self.label, basestring): s = '%s%s%s' % (parens[0], self.label, nodesep) else: s = '%s%s%s' % (parens[0], repr(self.label), nodesep) for child in self: if isinstance(child, Tree): s += '\n'+' '*(indent+2)+child.pformat(margin, indent+2, nodesep, parens, quotes) elif isinstance(child, tuple): s += '\n'+' '*(indent+2)+ "/".join(child) elif isinstance(child, basestring) and not quotes: s += '\n'+' '*(indent+2)+ '%s' % child else: s += '\n'+' '*(indent+2)+ repr(child) return s+parens[1] def _pformat_flat(self, nodesep, parens, quotes): childstrs = [] for child in self: if isinstance(child, Tree): childstrs.append(child._pformat_flat(nodesep, parens, quotes)) elif isinstance(child, tuple): childstrs.append("/".join(child)) elif isinstance(child, basestring) and not quotes: childstrs.append('%s' % child) else: childstrs.append(repr(child)) if isinstance(self.label, basestring): return '%s%s%s %s%s' % (parens[0], self.label, nodesep, " ".join(childstrs), parens[1]) else: return '%s%s%s %s%s' % (parens[0], repr(self.label), nodesep, " ".join(childstrs), parens[1])